I. Reading:

- Read the supplementary handout titled Background Material on Linear Algebra and Real Analysis.
- Read do Carmo, Appendix to Chapter 2, pages 118-127 (stop before Definition 1).
- Read do Carmo, Appendix to Chapter 5, pages 456-464 (through Proposition 9).
- Read do Carmo, Sections 1-1 through 1-4 (pages 1-14).

II. Practice problems:

1. Let $v, w \in \mathbb{R}^{3}$ be the following vectors:

$$
v=(1,0,1), \quad w=(1,2,3)
$$

Find all unit vectors that are orthogonal to both v and w.
2. Compute the determinant of each of the following matrices, and determine whether each matrix is singular or nonsingular:

$$
A=\left(\begin{array}{rr}
2 & 1 \\
-1 & 2
\end{array}\right), \quad B=\left(\begin{array}{rr}
1 & -1 \\
-2 & 2
\end{array}\right), \quad C=\left(\begin{array}{rrr}
1 & 2 & 4 \\
2 & 3 & 7 \\
4 & 2 & 10
\end{array}\right), \quad D=\left(\begin{array}{rrr}
2 & -3 & 2 \\
-1 & 2 & 1 \\
3 & 1 & -1
\end{array}\right) .
$$

3. Compute the rank of each of the following matrices:

$$
A=\left(\begin{array}{rrr}
2 & 1 & 0 \\
-1 & 2 & 0
\end{array}\right), \quad B=\left(\begin{array}{rr}
1 & -1 \\
-2 & 2
\end{array}\right), \quad C=\left(\begin{array}{rrr}
1 & 2 & 4 \\
2 & 3 & 7 \\
4 & 2 & 10
\end{array}\right), \quad D=\left(\begin{array}{rr}
2 & -3 \\
-1 & 2 \\
3 & 1
\end{array}\right) .
$$

4. do Carmo, Section 1-2 (p. 5), Exercise 1.

III. Required problems:

1. Let $V \subset \mathbb{R}^{3}$ be the subspace defined by the equation $3 x-2 y=0$. Find an orthonormal basis for V.
2. Let $S: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ be the linear map whose matrix is $\left(\begin{array}{rrr}2 & 1 & 0 \\ -1 & 3 & 1\end{array}\right)$. Find a basis for the nullspace of S.
3. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be the linear map whose matrix is

$$
\left(\begin{array}{rr}
1 & 1 \\
2 & 1 \\
0 & -1
\end{array}\right)
$$

Find an orthonormal basis for the range of T.
4. For each of the following matrices, find all eigenvalues and their corresponding eigenspaces.

$$
A=\left(\begin{array}{ll}
1 & 0 \\
2 & 3
\end{array}\right), \quad B=\left(\begin{array}{rrr}
-2 & -1 & 0 \\
0 & 1 & 1 \\
-2 & -2 & -1
\end{array}\right) .
$$

5. For each of the following functions $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$, compute the Jacobian matrix of F in terms of (u, v), and determine all points (u, v) at which the Jacobian has rank less than 2.
(a) $F(u, v)=\left(u v, u^{2}+v^{2}, u^{2}-v^{2}\right)$.
(b) $F(u, v)=\left(u, v, u^{2}-v^{2}\right)$.
(c) $F(u, v)=(\sin u \cos v, \sin u \sin v, \cos u)$.
6. Suppose $I=(a, b) \subset \mathbb{R}$ is an open interval, and $\boldsymbol{\alpha}: I \rightarrow \mathbb{R}^{3}$ and $\boldsymbol{\beta}: I \rightarrow \mathbb{R}^{3}$ are parametrized smooth curves. Show that the following identity holds for all $t \in I$:

$$
\frac{d}{d t}(\boldsymbol{\alpha}(t) \cdot \boldsymbol{\beta}(t))=\boldsymbol{\alpha}^{\prime}(t) \cdot \boldsymbol{\beta}(t)+\boldsymbol{\alpha}(t) \cdot \boldsymbol{\beta}^{\prime}(t)
$$

7. do Carmo, Section 1-2 (page 5), Exercise 2.
8. do Carmo, Section 1-2 (page 5), Exercise 3.
9. do Carmo, Section 1-2 (page 5), Exercise 4.
10. do Carmo, Section 1-2 (page 5), Exercise 5.
