Reading:

- Skim all of Chapter 1.
- Read carefully Section 2.2.
- Look quickly through Section 2.3.

Written Assignment:

A. Show that a composition of two Euclidean motions is a Euclidean motion, and the inverse of a Euclidean motion is a Euclidean motion, by proving that

$$
F_{A, b} \circ F_{B, c}=F_{A B, A c+b} \quad \text { and } \quad\left(F_{A, b}\right)^{-1}=F_{A^{-1},-A^{-1} b}
$$

(See pp. 14-15 for the definition of a Euclidean motion. If $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is any bijective map, its inverse is the unique map $F^{-1}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ that satisfies $F \circ F^{-1}(x)=x$ and $F^{-1} \circ F(x)=x$ for all $x \in \mathbb{R}^{n}$.)
B. Suppose $c:[a, b] \rightarrow \mathbb{R}^{n}$ is a parametrized curve segment. If $F_{A, v}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is any Euclidean motion, show that $I\left[F_{A, v} \circ c\right]=I[c]$, where I denotes the integral length of a curve:

$$
I[c]=\int_{a}^{b}\|\dot{c}(t)\| d t
$$

C. Bär, Exercise 2.2 (page 28).
D. For each of the following parametrized curves, write down an explicit orientation-preserving reparametrization by arc-length. Be sure to specify the domain of the new parametrization.
(a) $c_{1}:[0,2 \pi] \rightarrow \mathbb{R}^{2}$ is given by $c_{1}(t)=(3 \cos t, 3 \sin t)$.
(b) $c_{2}:(0, \infty) \rightarrow \mathbb{R}^{2}$ is given by $c_{2}(t)=\left(t^{2}, t^{3}\right)$.
E. Bär, Exercise 2.5 (page 33).
F. Bär, Exercise 2.7 (page 34).

