Reading:

- Make sure you've read all of Section 2.2. We probably won't get to 2.3 until late next week.

Written Assignment:

A. Bär, Exercise 2.4 (page 33).
B. Bär, Exercise 2.11 (page 36).
C. Bär, Exercise 2.13 (page 56).
D. Bär, Exercise 2.14 (page 56). More precisely, show that there is a unit-speed parametrization of the osculating circle, $C: \mathbb{R} \rightarrow \mathbb{R}^{2}$, with the following properties:

$$
C\left(t_{0}\right)=c\left(t_{0}\right), \quad \dot{C}\left(t_{0}\right)=\dot{c}\left(t_{0}\right), \quad \ddot{C}\left(t_{0}\right)=\ddot{c}\left(t_{0}\right) .
$$

E. The parametrized plane curve $c: \mathbb{R} \rightarrow \mathbb{R}^{2}$ given by $c(t)=(t, \cosh t)$ is called a catenary. (Any finite piece of it is a good model of the shape of a chain or cable hanging by its own weight.) Compute the curvature $\kappa(t)$ as a function of t. (Warning: this is not a unit-speed parametrization.)
F. Let a and b be positive constants. The ellipse defined by $x^{2} / a^{2}+y^{2} / b^{2}=1$ has a periodic (but not unit-speed) parametrization given by $c(t)=(a \cos t, b \sin t)$ for $t \in \mathbb{R}$. Compute the curvature as a function of t.

