Reading:

• After you've read section 2.2 carefully, start skimming section 3.1. We'll skip 2.3.

Written Assignment:

- A. Bär, Exercise 2.12 (page 56).
- B. Bär, Exercise 2.15 (page 57). [Hint: see problem D on Assignment 1.]
- C. Suppose $c, \tilde{c}: I \to \mathbb{R}^2$ are two unit-speed parametrized plane curves and $\kappa, \tilde{\kappa}: I \to \mathbb{R}$ are their curvatures. If $\kappa(t) = \tilde{\kappa}(t)$ for all $t \in I$, prove that there is a Euclidean motion $F: \mathbb{R}^2 \to \mathbb{R}^2$ such that $F \circ c = \tilde{c}$. [Hint: first assume that $c(t_0) = \tilde{c}(t_0)$ and $\dot{c}(t_0) = \dot{\tilde{c}}(t_0)$ for some $t_0 \in I$, and compute the derivative of the function $f(t) = \|\dot{c}(t) \dot{\tilde{c}}(t)\|^2 + \|n(t) \tilde{n}(t)\|^2$. To handle the general case, choose $t_0 \in I$ and show that there is a rigid motion F such that $F(c(t_0)) = \tilde{c}(t_0)$ and $F(\dot{c}(t_0)) = \dot{\tilde{c}}(t_0)$. The Frenet formulas of Proposition 2.2.4 might be helpful.]
- D. Suppose $c \colon \mathbb{R} \to \mathbb{R}^2$ is a closed plane curve whose curvature satisfies $0 \le \kappa(t) \le 1/R$ everywhere. (Thus c is no more curved than a circle of radius R.)
 - (a) If c is a simple closed curve, prove that its length is at least $2\pi R$.
 - (b) If c is not simple, prove that its length is at least $2\pi Rn_c$.