Reading:

- After you've read section 2.2 carefully, start skimming section 3.1. We'll skip 2.3.

Written Assignment:

A. Bär, Exercise 2.12 (page 56).
B. Bär, Exercise 2.15 (page 57). [Hint: see problem D on Assignment 1.]
C. Suppose $c, \widetilde{c}: I \rightarrow \mathbb{R}^{2}$ are two unit-speed parametrized plane curves and $\kappa, \widetilde{\kappa}: I \rightarrow \mathbb{R}$ are their curvatures. If $\kappa(t)=\widetilde{\kappa}(t)$ for all $t \in I$, prove that there is a Euclidean motion $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ such that $F \circ c=\widetilde{c}$. [Hint: first assume that $c\left(t_{0}\right)=\widetilde{c}\left(t_{0}\right)$ and $\dot{c}\left(t_{0}\right)=\dot{\widetilde{c}}\left(t_{0}\right)$ for some $t_{0} \in I$, and compute the derivative of the function $f(t)=\|\dot{c}(t)-\dot{\tilde{c}}(t)\|^{2}+\|n(t)-\widetilde{n}(t)\|^{2}$. To handle the general case, choose $t_{0} \in I$ and show that there is a rigid motion F such that $F\left(c\left(t_{0}\right)\right)=\widetilde{c}\left(t_{0}\right)$ and $F\left(\dot{c}\left(t_{0}\right)\right)=\dot{\widetilde{c}}\left(t_{0}\right)$. The Frenet formulas of Proposition 2.2.4 might be helpful.]
D. Suppose $c: \mathbb{R} \rightarrow \mathbb{R}^{2}$ is a closed plane curve whose curvature satisfies $0 \leq \kappa(t) \leq 1 / R$ everywhere. (Thus c is no more curved than a circle of radius R.)
(a) If c is a simple closed curve, prove that its length is at least $2 \pi R$.
(b) If c is not simple, prove that its length is at least $2 \pi R n_{c}$.

