Reading:

- Section 3.2 (up through page 95 only).

Written Assignment:

These problems will not be collected for grading. Be prepared to discuss as many of these as possible in class on Monday, Feb. 7.
A. Suppose $C \subset \mathbb{R}^{2}$ is a regular 1-manifold. The generalized cylinder determined by C is the set $S=C \times \mathbb{R} \subset \mathbb{R}^{3}$, that is,

$$
S=\left\{(x, y, z) \in \mathbb{R}^{3}:(x, y) \in C\right\}
$$

Show that every generalized cylinder is a regular surface.
B. When C is the unit circle in \mathbb{R}^{2} centered at the origin, the generalized cylinder S determined by C is usually just called the cylinder:

$$
S=\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}=1\right\}
$$

Determine a basis for the tangent plane $T_{p} S$ at an arbitrary point $p=\left(x_{0}, y_{0}, z_{0}\right) \in S$.
C. Let $S_{2} \subset \mathbb{R}^{3}$ be the following cone:

$$
S_{2}=\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}=z^{2}, z>0\right\}
$$

Show that S_{2} is a regular surface, and find two local parametrizations that cover the whole surface. Determine a basis for the tangent plane $T_{p} S_{2}$ at an arbitrary point $p=\left(x_{0}, y_{0}, z_{0}\right) \in S_{2}$.
D. Define $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ by $f(x, y, z)=(x-y)^{2}$, and let $S_{3}=f^{-1}(0)$. Prove that S_{3} is not a regular level set of f, and yet it is a regular surface. Determine a basis for the tangent plane $T_{p} S_{3}$ at an arbitrary point $p=\left(x_{0}, y_{0}, z_{0}\right) \in S_{3}$.
E. Let $U \subset \mathbb{R}^{2}$ be an open set, and let $S_{4}=U \times\{0\}=\left\{(x, y, z) \in \mathbb{R}^{3}:(x, y) \in U\right\}$. Let $f: U \rightarrow \mathbb{R}$ be a smooth function, and let S_{5} be the graph of f :

$$
S_{5}=\Gamma(f)=\left\{(x, y, z) \in \mathbb{R}^{3}:(x, y) \in U, z=f(x, y)\right\}
$$

Prove that S_{4} and S_{5} are diffeomorphic to each other. Determine a basis for the tangent plane $T_{p} S_{5}$ at an arbitrary point $p=\left(x_{0}, y_{0}, z_{0}\right) \in S_{5}$.

