Reading:

- Bär, Sections 3.2 (pp. 96-98), 3.3, 3.4.

Written Assignment:

A. Bär, exercise 3.5 (page 102).
B. Bär, exercise 3.6 (page 102).
C. Bär, exercise 3.7 (page 102).
D. Bär, exercise 3.8 (page 105).
E. Compute the matrix of the first fundamental form of the unit sphere with respect to the stereographic projection parametrization F_{1} described in the hint to problem 3.1.
F. For the surface parametrizations of exercises 3.6 and 3.7 above (the graph of a function and a cone), compute a continuous unit normal field N as a function of the parameters (x, y).
G. The Möbius strip is described informally in Example 3.4.5. Formally, it can be defined as the surface $S \subset \mathbb{R}^{3}$ that is the image of the map $F: \mathbb{R} \times(-1,1) \rightarrow \mathbb{R}^{3}$ defined by

$$
F(t, s)=\left(\cos t+s \cos t \cos \frac{t}{2}, \sin t+s \sin t \cos \frac{t}{2}, s \sin \frac{t}{2}\right)
$$

Let $U_{1}, U_{2} \subset \mathbb{R}^{2}$ be the sets $U_{1}=(0,2 \pi) \times(-1,1)$ and $U_{2}=(-\pi, \pi) \times(-1,1)$, and let $F_{1}=\left.F\right|_{U_{1}}$, $F_{2}=\left.F\right|_{U_{2}}$. Then F_{1} and F_{2} are regular surface parametrizations whose images cover all of S. (You don't need to prove this.)
(a) For each $i=1,2$, let N_{i} denote the unit normal field determined by the parametrization F_{i} as explained on page 105 of Bär. Prove that if there exists a continuous unit normal field N on all of S, then on the image of F_{1}, then either N agrees everywhere with N_{1} or N agrees everywhere with $-N_{1}$. Similarly, show that on the image of F_{2}, N agrees everywhere with N_{2} or with $-N_{2}$. [Hint: You don't need to compute the general formula for N_{1} and N_{2}. For each $i=1,2$, consider the function $f_{i}(t, s)=\left\langle N(F(t, s)), N_{i}(F(t, s))\right\rangle$.]
(b) Compute both N_{1} and N_{2} at the points $(0,1,0)$ and $(0,-1,0)$.
(c) Prove that there does not exist a continuous unit normal field on S, and therefore S is not orientable.

