Reading:

- Bär, Sections 3.5, 3.6, and the following parts of Section 3.8: Example 3.8 .12 (p. 139) and subsection 3.8.3 (pp. 143-145).

Written Assignment:

Note: In these problems, you'll need the following definitions. Suppose $S \subset \mathbb{R}^{3}$ is a regular surface, $p \in S$, W_{p} is the Weingarten map of S at p, and $\left(w_{i}^{j}\right)$ is the matrix of W_{p} with respect to some basis of $T_{p} S$. The Gauss curvature of \boldsymbol{S} at \boldsymbol{p} is

$$
K(p)=\operatorname{det}\left(W_{p}\right)=w_{1}^{1} w_{2}^{2}-w_{1}^{2} w_{2}^{1}
$$

and the mean curvature of \boldsymbol{S} at \boldsymbol{p} is

$$
H(p)=\frac{1}{2} \operatorname{trace}\left(H_{p}\right)=\frac{1}{2}\left(w_{1}^{1}+w_{2}^{2}\right)
$$

A regular surface is called a minimal surface if its mean curvature is identically zero. (We'll discuss where this name comes from later.)
A. Let $U \subset \mathbb{R}^{2}$ be an open set, let $f: U \rightarrow \mathbb{R}$ be a smooth function, and let $S \subset \mathbb{R}^{3}$ be the graph of f. Compute the matrix of the second fundamental form of S with respect to the parametrization of Example 3.1.4 (p. 82). [You may quote the results of previously assigned homework problems.]
B. Bär, Exercise 3.20 (p. 139).
C. Let $H=\{(u, v): u>0\}$ be the right half-plane, and let $C \subset H$ be a regular 1-manifold. Suppose for simplicity that C has a global parametrization: in other words, C is the image of a regular parametrized curve $c: I \rightarrow H$, with component functions $c(t)=(r(t), s(t))$ (so $r(t)>0$ for all $t \in I)$. Let S_{C} denote the surface of revolution determined by C as in Assignment 4. For all of the following problems, use a parametrization of the form $F(t, \varphi)=(r(t) \cos \varphi, r(t) \sin \varphi, s(t))$ with (t, φ) restricted to a suitable domain (which you don't have to specify explicitly).
(a) Show that the following formula gives a unit normal field on the image of F :

$$
N(F(t, \varphi))=\frac{1}{\sqrt{\dot{r}(t)^{2}+\dot{s}(t)^{2}}}(\dot{s}(t) \cos \varphi, \dot{s}(t) \sin \varphi,-\dot{r}(t))
$$

(b) Using the basis for $T_{p} S_{C}$ determined by F and the normal field N defined above, compute the matrices of the first fundamental form, second fundamental form, and Weingarten map at an arbitrary point $p=F(t, \varphi) \in S$ in terms of $r(t), s(t)$, and their derivatives. Verify that your formulas match the computations on pp. 143-144 of the textbook in the special case in which $s(t) \equiv t$.
(c) Now assume that c is unit-speed, and prove that the Gauss curvature at any point $p=F(s, t) \in S$ can be expressed as

$$
K(p)=-\frac{\ddot{r}(t)}{r(t)}
$$

[Hint: first prove that $\ddot{r}(t) \dot{r}(t)+\ddot{s}(t) \dot{s}(t) \equiv 0$.]
(d) Prove that the Gauss curvature of S is everywhere zero if and only if C is contained in a straight line. [Remark: this shows that the only surfaces of revolution with zero Gauss curvature are portions of planes, cones, and cylinders.]
D. Bär, Exercise 3.31 (p. 145). [Hint: personally, I find the hint in the back of the book confusing. My suggestion is just to use the formulas you derived in the preceding problem for a surface of revolution generated by a non-unit-speed curve. The identities $\cos t=\cos ^{2}(t / 2)-\sin ^{2}(t / 2)$ and $\sin t=2 \sin (t / 2) \cos (t / 2)$ will probably be useful.]

