Assignment \#8: Due 3/4/11 (CORRECTED VERSION 3)

Reading:

- Bär, Sections 3.7 and 3.8.

Written Assignment:

A. Bär, Exercise 3.12 (p. 126).
B. Let $k>0$, and let $S \subset \mathbb{R}^{3}$ be the graph of the function $g(x, y)=k x y$ (called a hyperbolic paraboloid). Compute the Gauss and mean curvatures of S at the origin.
C. Let $H \subset \mathbb{R}^{2}$ be the right half-plane, and let $c:(-\pi / 2, \pi / 2) \rightarrow H$ be the parametrized curve given by $c(t)=(r(t), s(t))$, where

$$
\begin{aligned}
& r(t)=\frac{1}{2} \cos t \\
& s(t)=\int_{0}^{t} \sqrt{1-\frac{1}{4} \sin ^{2} u} d u
\end{aligned}
$$

Let C be the image of c, and let S_{C} be the surface of revolution with generating curve C. You may use without proof the fact that the image of C is a regular 1-manifold and thus S_{C} is a regular surface. Show that S_{C} has Gauss curvature identically equal to 1 , but that its principal curvatures are not constant.
D. Suppose $S \subset \mathbb{R}^{3}$ is a regular surface with positive Gauss curvature everywhere. Suppose $c: I \rightarrow \mathbb{R}^{3}$ is a unit-speed curve whose image lies in S. Recall that the curvature of \boldsymbol{c} is defined as $\kappa(t)=\|\ddot{c}(t)\|$ (Def. 2.3.2).
(a) Show that the curvature of c satisfies $\kappa(t) \geq \min \left(\left|\kappa_{1}\right|,\left|\kappa_{2}\right|\right)$, where κ_{1} and κ_{2} are the principal curvatures of S at $c(t)$.
(b) Still assuming that S has positive Gauss curvature everywhere, is it necessarily true that $\kappa(t) \leq$ $\max \left(\left|\kappa_{1}\right|,\left|\kappa_{2}\right|\right) ?$ Either prove it or give a counterexample.
(c) If S does not have positive Gauss curvature everywhere, is it necessarily true that $\kappa(t) \geq$ $\min \left(\left|\kappa_{1}\right|,\left|\kappa_{2}\right|\right)$? Either prove it or give a counterexample.

