Math 442

Differential Geometry Assignment #8: Due 3/4/11 (CORRECTED VERSION 3)

Reading:

• Bär, Sections 3.7 and 3.8.

Written Assignment:

- A. Bär, Exercise 3.12 (p. 126).
- B. Let k > 0, and let $S \subset \mathbb{R}^3$ be the graph of the function g(x, y) = kxy (called a *hyperbolic paraboloid*). Compute the Gauss and mean curvatures of S at the origin.
- C. Let $H \subset \mathbb{R}^2$ be the right half-plane, and let $c: (-\pi/2, \pi/2) \to H$ be the parametrized curve given by c(t) = (r(t), s(t)), where

$$r(t) = \frac{1}{2}\cos t,$$

$$s(t) = \int_0^t \sqrt{1 - \frac{1}{4}\sin^2 u} \, du.$$

Let C be the image of c, and let S_C be the surface of revolution with generating curve C. You may use without proof the fact that the image of C is a regular 1-manifold and thus S_C is a regular surface. Show that S_C has Gauss curvature identically equal to 1, but that its principal curvatures are not constant.

- D. Suppose $S \subset \mathbb{R}^3$ is a regular surface with positive Gauss curvature everywhere. Suppose $c: I \to \mathbb{R}^3$ is a unit-speed curve whose image lies in S. Recall that the *curvature of* c is defined as $\kappa(t) = \|\ddot{c}(t)\|$ (Def. 2.3.2).
 - (a) Show that the curvature of c satisfies $\kappa(t) \ge \min(|\kappa_1|, |\kappa_2|)$, where κ_1 and κ_2 are the principal curvatures of S at c(t).
 - (b) Still assuming that S has positive Gauss curvature everywhere, is it necessarily true that $\kappa(t) \leq \max(|\kappa_1|, |\kappa_2|)$? Either prove it or give a counterexample.
 - (c) If S does not have positive Gauss curvature everywhere, is it necessarily true that $\kappa(t) \geq \min(|\kappa_1|, |\kappa_2|)$? Either prove it or give a counterexample.