Reading:

- Read the handout titled "Background Material from Multivariable Calculus."
- Read Sections 1.1 and 1.2 (in Montiel and Ros).
- Skim Section 1.3.

Written Assignment:

A. Suppose $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}$ is a linear map. Show that f is its own differential at each point: more precisely, for every $p \in \mathbb{R}^{n}$, show that the linear map $(d f)_{p}$ is equal to f itself.
B. Now suppose $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}$ is an affine map, written as $f(x)=A x+b$ for some linear map A and some $b \in \mathbb{R}^{k}$. Show that for each $p \in \mathbb{R}^{n},(d f)_{p}=A$.
C. Suppose $U \subset \mathbb{R}^{n}$ is an open set, $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a smooth function, and $p \in U$. Let $\Delta f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be defined by $\Delta f(v)=f(p+v)-f(p)$. (This formula was written incorrectly in the middle of page 2 of the handout.) Prove that

$$
\lim _{v \rightarrow 0} \frac{\left|\Delta f(v)-(d f)_{p}(v)\right|}{|v|}=0
$$

(Remark: this says that the differential is a good linear approximation to Δf, in the sense that the error can be made as small as we want compared to $|v|$ by taking v sufficiently small.) [Hint: apply the mean value theorem to the function $g:[0,1] \rightarrow \mathbb{R}$ defined by $g(t)=f(p+t v)$, and use the continuity of $\partial f / \partial x_{i}$ and the definition of the limit.]
D. Show that a composition of two rigid motions of \mathbb{R}^{n} is again a rigid motion, and the inverse of a rigid motion is a rigid motion.
E. Recall that an orthogonal matrix is an $n \times n$ matrix A whose associated linear map $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ satisfies $(A x) \cdot(A y)=x \cdot y$ for all $x, y \in \mathbb{R}^{n}$. Show that a square matrix is orthogonal matrix if and only if its columns are orthonormal vectors. (A set of vectors $\left\{v_{1}, \ldots, v_{k}\right\}$ in \mathbb{R}^{n} is said to be orthonormal if $\left|v_{i}\right|=1$ for each i and $v_{i} \cdot v_{j}=0$ for $i \neq j$. The dot represents the Euclidean dot product, which Montiel \& Ros write with angle brackets: $\langle f(t), g(t)\rangle=f(t) \cdot g(t)$.
F. Suppose $I \subset \mathbb{R}$ is an open interval and $\alpha, \beta: I \rightarrow \mathbb{R}^{n}$ are smooth curves. Prove that

$$
\frac{d}{d t}(\alpha(t) \cdot \beta(t))=\alpha^{\prime}(t) \cdot \beta(t)+\alpha(t) \cdot \beta^{\prime}(t)
$$

G. Suppose $\alpha: I \rightarrow \mathbb{R}^{n}$ is a smooth curve whose distance from the origin is constant: $|\alpha(t)| \equiv c$ for all $t \in I$. Prove that $\alpha^{\prime}(t) \perp \alpha(t)$ for all t.

