Assignment \#3: Due Friday, 1/27/12

Reading:

- Read Section 1.5.

Written Assignment:

A. Exercise 1.18 (p. 11). [Hint: use the determinant formula for curvature that I derived in class today, together with the linear-algebraic fact that $\operatorname{det}(A B)=(\operatorname{det} A)(\operatorname{det} B)$ for square matrices A and B.]
B. Exercise 1.19 (p. 11).
C. Exercise 1.20 (p. 11). [Here is a somewhat more precise rephrasing of the exercise: Let $\alpha: I \rightarrow \mathbb{R}^{2}$ be a unit-speed curve. Suppose there is a smooth function $\theta: I \rightarrow \mathbb{R}$ such that $\alpha^{\prime}(s)=(\cos \theta(s), \sin \theta(s))$ for all $s \in I$. (Such a function is called an angle function for $\boldsymbol{\alpha}$, and represents the angle between $\alpha^{\prime}(s)$ and the unit vector parallel to the x-axis.) Show that $\theta^{\prime}(s)= \pm k(s)$ for all $s \in I$.]

