Reading:

• Read Section 1.5.

Written Assignment:

- A. Exercise 1.18 (p. 11). [Hint: use the determinant formula for curvature that I derived in class today, together with the linear-algebraic fact that $\det(AB) = (\det A)(\det B)$ for square matrices A and B.]
- B. Exercise 1.19 (p. 11).
- C. Exercise 1.20 (p. 11). [Here is a somewhat more precise rephrasing of the exercise: Let $\alpha: I \to \mathbb{R}^2$ be a unit-speed curve. Suppose there is a smooth function $\theta: I \to \mathbb{R}$ such that $\alpha'(s) = (\cos \theta(s), \sin \theta(s))$ for all $s \in I$. (Such a function is called an **angle function for** α , and represents the angle between $\alpha'(s)$ and the unit vector parallel to the x-axis.) Show that $\theta'(s) = \pm k(s)$ for all $s \in I$.]