Reading:

- Sections 2.1, 2.2, 2.3, and 2.4.

Written Assignment:

A. Exercise 2.19 (p. 38).
B. Exercise 2.24 (p. 39).
C. Exercise 2.25 (p. 39).
D. Let $H \subset \mathbb{R}^{2}$ be the right half-plane, defined by

$$
H=\{(u, v): u>0\}
$$

Suppose $C \subset H$ is a simple curve (see Example 2.18). The surface of revolution determined by \boldsymbol{C} is the set $S_{C} \subset \mathbb{R}^{3}$ defined by

$$
S_{C}=\{(x, y, z):(s(x, y), z) \in C\}
$$

where $s(x, y)=\sqrt{x^{2}+y^{2}}$. The simple curve C is called the generating curve for the surface. Show that S_{C} is a regular surface.
E. Let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be the function $f(x, y, z)=x^{2}-2 x y+y^{2}$. Which level sets of f are regular surfaces? For each level set, either prove it is a regular surface or prove it is not.

