Reading:

- Sections 2.5 and 2.6.

Written Assignment:

A. Exercise 2.37 (p. 42).
B. Exercise 2.43 (p. 44).
C. Suppose $C \subseteq \mathbb{R}^{2}$ is a simple curve. The generalized cylinder determined by C is the set $S=C \times \mathbb{R} \subseteq$ \mathbb{R}^{3}, that is,

$$
S=\left\{(x, y, z) \in \mathbb{R}^{3}:(x, y) \in C\right\}
$$

Show that every generalized cylinder is a regular surface, and determine a basis for the tangent plane $T_{p} S$ at an arbitrary point $p=\left(x_{0}, y_{0}, z_{0}\right) \in S$.
D. Let $S_{2} \subseteq \mathbb{R}^{3}$ be the following cone:

$$
S_{2}=\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}=z^{2}, z>0\right\}
$$

Show that S_{2} is a regular surface, and determine a basis for the tangent plane $T_{p} S_{2}$ at an arbitrary point $p=\left(x_{0}, y_{0}, z_{0}\right) \in S_{2}$.
E. Let $U \subseteq \mathbb{R}^{2}$ be an open set, and let $S_{4}=U \times\{0\}=\left\{(x, y, z) \in \mathbb{R}^{3}:(x, y) \in U, z=0\right\}$. Let $f: U \rightarrow \mathbb{R}$ be a smooth function, and let S_{5} be the graph of f :

$$
S_{5}=\left\{(x, y, z) \in \mathbb{R}^{3}:(x, y) \in U, z=f(x, y)\right\}
$$

Prove that S_{4} and S_{5} are diffeomorphic to each other. Determine a basis for the tangent plane $T_{p} S_{5}$ at an arbitrary point $p=\left(x_{0}, y_{0}, z_{0}\right) \in S_{5}$.
F. Prove that the following pairs of surfaces are diffeomorphic.
(a) The sphere $S^{2}=\left\{(x, y, z): x^{2}+y^{2}+z^{2}=1\right\}$ and the ellipsoid $E=\left\{(x, y, z): x^{2} / a^{2}+y^{2} / b^{2}+\right.$ $\left.z^{2} / c^{2}=1\right\}$, where a, b, c are positive constants.
(b) The plane $P=\{(x, y, z): z=0\}$ and the paraboloid $Q=\left\{(x, y, z): z=x^{2}+y^{2}\right\}$.
(c) The cylinder $Z=\left\{(x, y, z): x^{2}+y^{2}=1\right\}$ and the one-sheeted hyperboloid $H=\{(x, y, z)$: $\left.x^{2}+y^{2}=z^{2}+1\right\}$.

