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Handout 1
BACKGROUND MATERIAL FROM MULTIVARIABLE CALCULUS

(CORRECTED 1/16/13)

Differential geometry is based on the theory of multivariable calculus. Most of this theory is
covered (at least in the 2-dimensional case) in Math 326, and can be found in Chapters 6–9 of
the standard Math 326 textbook, Advanced Calculus, 3rd Edition (1983), by Taylor and Mann.
Chapter 12 of that book is not typically covered in 326, but it includes a good treatment of this
theory in arbitrary dimensions, and is useful as a reference.

1. Scalar-Valued and Vector-Valued Functions

The main subject of this note is functions (or, synonymously, maps or mappings) between Eu-
clidean spaces. Because we want to be able to take partial derivatives of our functions in all
directions, we will generally insist that they be defined on open subsets of their domains.

Thus suppose m and n are positive integers, U is an open subset of Rm, and f : U → R
n is a

function. When n = 1, we call f a scalar-valued function, and when n > 1, it is a vector-valued
function. Here are some specific interpretations of such functions:

• When m = n = 1, f : R → R is just an ordinary real-valued function of one real variable.
• When m = 1, n > 1, and U ⊆ R is an interval, f : U → R

n can be interpreted as a
parametric curve in R

n. For each t ∈ U , we think of the point f(t) ∈ R
n as representing

the position of a moving particle at time t.
• When m > 1 and n = 1, a function f : U → R is often called a scalar field on U . In
applications, it can represent any quantity that assigns a numerical value to each point in a
region of the plane or space, such as temperature in a room or varying density of an object.

• When m = n > 1 (usually m = 2 or 3), a vector-valued function f : U → R
n is sometimes

called a vector field on U . It can represent a quantity that has both magnitude and
direction at each point, such as a magnetic field or the velocity field of a moving fluid.

• In general when m > 1 and n > 1, a function f : U → R
n can be interpreted as a transfor-

mation, that is, a function that takes points of U and maps them to points of Rn. For exam-
ple, the polar coordinate map f(r, θ) = (r cos θ, r sin θ) takes the subset {(r, θ) : r > 0} ⊆ R

2

and maps it onto R
2
� {0} (wrapping around infinitely many times).

In general, given an open subset U ⊆ R
m and a function f : U → R

n as above, at each point
x = (x1, . . . , xm) ∈ U , we can write the value f(x) ∈ R

n in components as

f(x) = (f1(x), . . . , fn(x)).

This determines n scalar-valued functions f1, . . . , fn : U → R, called the coordinate functions or
component functions of f , and f is in turn determined by them. Given a nonnegative integer
k, we say that f is a function of class Ck if each component function of f has continuous
partial derivatives of all orders less than or equal to k. (A function of class C0 is just a continuous
function.) If f is of class Ck for every k, we say it is of class C∞. Functions of class C∞ are also
called smooth functions.

A map f : Rm → R
n is called a linear map if it satisfies the following identity for all x, y ∈ R

m

and all a, b ∈ R:
f(ax+ by) = af(x) + bf(y).

It is shown in linear algebra courses that linear maps from R
m to R

n are exactly those maps that
can be expressed in the form of matrix multiplication. More precisely, a map f : Rm → R

n is linear
1
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if and only if there is a n × m matrix A = (Aij) of real numbers, such that f(x) is obtained by
expressing both x and f(x) as column matrices (of dimensions m× 1 and n× 1, respectively), and
carrying out the following matrix multiplication:

f(x) =

⎛
⎜⎝
A11 . . . A1m
...

. . .
...

An1 . . . Anm

⎞
⎟⎠

⎛
⎜⎝

x1
...

xm

⎞
⎟⎠ =

⎛
⎜⎝
A11x1 + · · ·+A1mxm

...
An1x1 + · · ·+Anmxm

⎞
⎟⎠ ∈ R

n.

Thus the matrix A completely determines the function f . Conversely, A can be obtained from f
in the following way. For each i = 1, . . . ,m, let ei = (0, . . . , 1, . . . , 0) be the vector in R

m with a 1
in the ith place and zeros elsewhere. In column form, they can be written

e1 =

⎛
⎜⎜⎜⎜⎜⎝

1
0
...
0
0

⎞
⎟⎟⎟⎟⎟⎠

, e2 =

⎛
⎜⎜⎜⎜⎜⎝

0
1
...
0
0

⎞
⎟⎟⎟⎟⎟⎠

, . . . , em =

⎛
⎜⎜⎜⎜⎜⎝

0
0
...
0
1

⎞
⎟⎟⎟⎟⎟⎠

.

These vectors are called the standard basis vectors for Rm. If a linear map f is known, its matrix
A can be computed by observing that the columns of A are the images under f of the standard
basis vectors: f(e1), . . . , f(em). It follows from this computation that if f is a linear map, its ith
component function is of the form fi(x) = Ai1x1 + · · · + Aimxm, which is infinitely differentiable;
thus every linear map is smooth.

If f and g are linear maps represented by the matrices A and B, respectively, the composite map
f ◦ g is represented by the product matrix AB. The identity map id : Rn → R

n is easily seen to be
linear. It is represented by the n× n identity matrix In, which is the matrix that has 1’s on the
main diagonal and 0’s elsewhere:

In =

⎛
⎜⎜⎜⎝
1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1

⎞
⎟⎟⎟⎠ .

It follows that InA = A = AIm for any m× n matrix A.

The following theorem is proved in linear algebra courses:

Theorem 1.1. Let f : Rn → R
n be a linear map, and let A be its matrix. The following statements

are equivalent:

(a) f has a linear inverse map f−1 : Rn → R
n.

(b) f is bijective.
(c) f is injective or surjective.
(d) detA �= 0,
(e) The columns of A are linearly independent.
(f) There is an n× n matrix A−1 such that AA−1 = A−1A = In.

If any (and hence all) of the conditions in the preceding theorem are true, then we say f is
invertible or is an isomorphism, and its matrix A is said to be invertible or nonsingular.
Because all linear maps are smooth, every invertible linear map is a diffeomorphism.

There is a slightly more general type of map that is closely related to linear maps. A map
f : Rm → R

n is called an affine map if there exist a linear map f0 : R
m → R

n and a vector b ∈ R
n

such that f(x) = f0(x) + b for all x ∈ R
m. (In other words, f is equal to a linear map plus a

constant.) Note that the functions f : R → R of the form f(x) = mx+ b, which are referred to in
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high-school algebra as “linear functions,” are actually affine functions, not linear ones in the sense
we have defined here (unless b = 0).

Fair warning: different authors use different notations and terminology for matrices. Abate &
Tovena use vertical bars instead of parentheses to denote a matrix, while many other books use
vertical bars to denote the determinant of a matrix. To avoid confusion, I will not use vertical bars
at all; I’ll use parentheses to denote a matrix, and the notation “det” to denote a determinant, so
the determinant of the matrix A will be denoted detA.

2. The Differential of a Map

Henceforth, we assume that U ⊆ R
m is open and f : U → R

n is smooth. (All of these results are
valid under weaker differentiability assumptions, but assuming f is smooth frees us from having
to count how many derivatives we need to take in any given argument.) For any point p ∈ U , the
Jacobian matrix of f at p is the matrix

Jac f(p) =

⎛
⎜⎜⎜⎜⎝

∂f1
∂x1

(p) . . .
∂f1
∂xm

(p)

...
. . .

...
∂fn
∂x1

(p) . . .
∂fn
∂xm

(p)

⎞
⎟⎟⎟⎟⎠ .

(Each row of this matrix consists of the partial derivatives of one of the component functions
of f .) In the special case m = n, where Jac f(p) is a square matrix, its determinant, denoted by
det Jac f(p), is called the Jacobian determinant of f at p. (Another warning about terminology:
the term “Jacobian” by itself sometimes refers to the Jacobian matrix, and sometimes to the
Jacobian determinant. To avoid confusion, we will always say explicitly which one we mean.)

The principal significance of the Jacobian matrix is that it defines a linear map that approximates
the nearby behavior of the function f . Here’s how that works. Given an open subset U ⊆ R

m and
a smooth map f : U → R

n, for each p ∈ U we define the differential of f at p to be the linear
map dfp : R

m → R
n whose matrix is Jac f(p). The differential of f at p represents a “best linear

approximation” to the difference between the value of f at p and its value at a nearby point p+ v,
in the sense that will be made precise later (see Theorem 1.4 below).

The differential unifies most of the different notions of derivatives that occur in multivariable
calculus. In three special cases, it has familiar interpretations:

• When both m and n are equal to 1, f is just a real-valued function of one real variable, and
the differential dft0 is the linear map whose 1× 1 matrix has the ordinary derivative f ′(t0)
as its sole entry.

• In the case m > 1 and n = 1, f : U → R is a scalar field on U , and dfp is rep-
resented by the row matrix with components (∂f/∂x1(p), . . . , ∂f/∂xm(p)). The vector
with these components is called the gradient of f at p, and is denoted by ∇f(p) =
(∂f/∂x1(p), . . . , ∂f/∂xm(p)).

• When m = 1 and n > 1, and U = (a, b) is an open interval in R, f is called a parametrized
curve in R

n, and we often denote the variable in the domain (the “parameter”) by t and
think of it as “time.” In this case, for each t0 ∈ (a, b), dft0 is represented by the column
matrix with components (f ′

1(t0), . . . , f
′
m(t0)). This vector is called the velocity of f at

time t0 and is often denoted by f ′(t0) or ḟ(t0).

The other two types of derivatives that you might have seen are the divergence and curl of
a vector field f : R3 → R

3. The divergence is actually the trace of the differential of f (the sum
of the entries on the main diagonal), and we will make use of it later in the course. The curl is
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a vector field built out of a more complicated combination of partial derivatives; we will not have
occasion to use it in this course.

3. The Chain Rule

You have seen various versions of the chain rule for computing derivatives of composite functions.
They all have a very concise and unified formulation in terms of differentials.

Theorem 1.2 (The Chain Rule). Suppose V ⊆ R
m and U ⊆ R

n are open subsets, and f : V → U
and g : U → R

k are smooth functions. Then the composite function g ◦ f : V → R
k is smooth, and

for each p ∈ V its differential is given by

d(g ◦ f)p = dgf(p) ◦ dfp.

The composition on the right-hand side represents composition of linear maps; in terms of
matrices, it can be interpreted as matrix multiplication. Thus if we let (x1, . . . , xm) denote the
coordinates in V and (u1, . . . , un) those in U , the component in the ith row and jth column of
d(g ◦ f)p is

∂

∂xj
(gi ◦ f)(p) =

n∑
l=1

∂gi
∂ul

(f(p))
∂fl
∂xj

(p).

Here are the situations in which we will most frequently use the chain rule.

• m = n = k = 1: This is the classic chain rule of one-variable calculus:
d

dx
(g ◦ f)(p) = dg

du
(f(p))

df

dx
(p).

• m = n = 1, k > 1: In this case, g is a parametrized curve in R
k, and f is a “reparametri-

zation” of g. The formula above applies to each component of g ◦ f :
d

dx
(gi ◦ f)(p) = dgi

du
(f(p))

df

dx
(p), i = 1, . . . , k.

• m = 1, n > 1, k = 1: Here f is a parametrized curve in U ⊆ R
n, and g is a scalar field on

U , so g ◦ f(t) represents the function g evaluated along the curve f at time t. In this case,
the chain rule reduces to the following formula for its derivative:

d

dt
(g ◦ f)(t0) =

n∑
l=1

∂g

∂ul
(f(t0))

dfl
dt

(t0) = ∇g(f(p)) · f ′(t0).

• m > 1, n = k = 1: Now f is a scalar field on V ⊆ R
m, and g is an ordinary real-valued

function of one real variable. The chain rule reads
∂

∂xj
(g ◦ f)(p) = g′(f(p))

∂f

∂xj
(p), j = 1, . . . ,m,

or
∇(g ◦ f)(p) = g′(f(p))∇f(p),

• m = 1, n > 1, k > 1: In this case, we think of f as a parametrized curve in U ⊆ R
n, and g

is a transformation from U to some subset of Rk (where k might be equal to n or not). In
this case, we can interpret the column matrix dft0 as the velocity of f at time t0, and write
it in the form f ′(t0). Likewise, the composition g ◦ f is also a parametrized curve in R

n,
and the chain rule gives a formula for its velocity:

(g ◦ f)′(t0) = dgf(t0)(f
′(t0)).

In other words, the velocity of the composite curve is the differential of g applied to the
velocity of f .
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• If m and n are abitrary and f : Rm → R
n is a linear map, then the differential of f at any

point p ∈ R
m is just the map f itself:

dfp = f.

(You will be asked to prove this for homework.)

Using the chain rule, we can prove the promised theorem that shows how the differential provides
a good approximation to nearby values of the function. First we recall the following standard lemma
about the dot product in R

n.

Lemma 1.3 (Cauchy–Schwartz Inequality). For all v,w ∈ R
n,

|v · w| ≤ ‖v‖ ‖w‖.

Proof: See Exercise 3.1 on the Metric Spaces handout from Math 441. �

The following theorem says that, in the special case of a real-valued function f : U → R, dfp(v)
is a good approximation to the difference Δf(v) = f(p + v) − f(p) in the sense that by taking v
sufficiently small, we can make the difference between Δf(v) and dfp(v) much smaller than v.

Theorem 1.4. Suppose U ⊆ R
m is an open set, f : U → R is a smooth function, and fix p ∈ U .

For any v ∈ R
m small enough that p+ v ∈ U , define Δf(v) = f(p+ v)− f(p). Then

lim
v→0

|Δf(v)− dfp(v)|
‖v‖ = 0.

Proof: Because U is open, we can choose r > 0 such that the open ball B(p, r) is contained in
U . For any vector v ∈ R

m with ‖v‖ < r, define a function gv : [0, 1] → R by gv(t) = f(p + tv).
The mean-value theorem applied to gv guarantees that there exists some real number τ(v) ∈ (0, 1)
(depending on v, of course), such that gv(1)−gv(0) = g′v(τ(v)). By the chain rule, for each t ∈ (0, 1),

g′v(t) =
n∑

i=1

∂f

∂xi
(p+ tv)vi,

and therefore

Δf(v) = gv(1) − gv(0) =

n∑
i=1

∂f

∂xi
(p+ τ(v)v)vi,

which yields

Δf(v)− dfp(v) = gv(1) − gv(0)− dfp(v)

=

n∑
i=1

(
∂f

∂xi
(p+ τ(v)v) − ∂f

∂xi
(p)

)
vi

=
(∇f(p+ τ(v)v) −∇fp(v)

) · v.
Let ε > 0 be given. Because the component functions of the gradient vector field ∇f : U → R

m

are the partial derivatives of f , each of which is continuous at p, we can choose δ > 0 such that
‖x− p‖ < δ and x ∈ U implies ‖∇f(x)−∇f(p)| < ε. If ‖v‖ < δ, the fact that 0 < τ(v) < 1 implies
‖(p + τ(v)v) − p‖ = τ(v)‖v‖ < ‖v‖, and therefore by the Cauchy–Schwartz inequality,

|Δf(v)− dfp(v)| ≤ ‖∇f(p+ τ(v)v) −∇f(p)‖ ‖v‖ < ε‖v‖.
From this it follows that if v �= 0 and ‖v‖ < δ, we have

|Δf(v)− dfp(v)|
‖v‖ < ε,
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which is what we needed to prove. �

4. The Inverse and Implicit Function Theorems

There are two extremely important theorems that allow us to draw deep conclusions about the
behavior of a smooth function from information about the behavior of its differential: the inverse
function theorem and the implicit function theorem. Proofs of both of these theorems can be found
in Chapter 12 of Advanced Calculus by Taylor and Mann.

If U ⊆ R
m and V ⊆ R

n are open subseets and k is a positive integer, a bijective Ck map
f : U → V with Ck inverse f−1 : V → U is called a Ck diffeomorphism. Since Ck maps are
continuous, every diffeomorphism is in particular a homeomorphism. If we don’t specify the integer
k, we will generally assume by default that our diffeomorphisms are smooth (i.e., of class Ck for
every k).

The following theorem is an easy consequence of the chain rule.

Theorem 1.5. Suppose U ⊆ R
m and V ⊆ R

n are open subsets, and f : U → V is a diffeomorphism.
Then for each p ∈ U , the linear map dfp is invertible, with d(f−1)f(p) as its inverse.

Proof: Using the fact that f−1 ◦ f = idU , the chain rule implies the following for each p ∈ U :

d(f−1)f(p) ◦ dfp = d(id)p = id .

Similarly, f ◦ f−1 = idV implies

dfp ◦ d(f−1)f(p) = d(id)f(p) = id .

Thus dfp is an invertible linear map. �

Corollary 1.6 (Smooth Invariance of Dimension). If U ⊆ R
m and V ⊆ R

n are open subsets and
f : U → V is a diffeomorphism, then m = n.

Proof: The preceding theorem shows that dfp is an invertible linear map. Because invertible
linear maps take bases to bases, it follows that m = n. �

The converse of Theorem 1.5 is not true—it is not too hard to come up with an example of a
smooth map whose differential is invertible at each point, but which is not bijective. However, the
following theorem (whose proof is much more involved than that of Theorem 1.5) provides a sort
of local converse.

Theorem 1.7 (Inverse Function Theorem). Suppose n is a positive integer, U ⊆ R
n is an open

subset, and f : U → R
n is a smooth map. If p ∈ U is a point such that dfp is invertible, then there

exist an open subset U0 ⊆ U containing p and an open subset V0 ⊆ R
n containing f(p) such that

f(U0) = V0 and f |U0 : U0 → V0 is a diffeomorphism.

The next theorem gives a theoretical answer to the question “when is it possible to solve an
equation for one variable in terms of all the others?”

Theorem 1.8 (Implicit Function Theorem). Suppose U ⊆ R
n+1 is an open subset and f : U → R is

a smooth function. Suppose also that p = (p1, . . . , pn+1) is a point in U such that ∂f/∂xn+1(p) �= 0,
and set c = f(p). Then there exist open sets V ⊆ R

n and W ⊆ R such that p ∈ V ×W ⊆ U , and a
smooth function g : V → W , such that for all x = (x1, . . . , xn+1) ∈ V ×W ⊆ U , we have f(x) = c
if and only if xn+1 = g(x1, . . . , xn).



7

In other words, the conclusion says that provided the partial derivative of f with respect to
xn+1 is nonzero at p, we can solve the equation f(x1, . . . , xn+1) = c for xn+1 in terms of the other
variables for x sufficiently close to p.

Another way to phrase the implicit function theorem is in terms of graphs. If V and W are any
two sets and g : V → W is a function, the graph of g is the following subset of V ×W :

Γg = {(x, y) ∈ V ×W : x ∈ V and y = g(x)}.
Corollary 1.9. Under the same hypotheses as in the implicit function theorem, there exist open
sets V ⊆ R

n and W ⊆ R with p ∈ V ×W ⊆ U , such that f−1(c)∩ (V ×W ) is the graph of a smooth
function g : V → W .

In the statement of the implicit function theorem and its corollary, we have used the last variable
as the one to be solved for, just for convenience of notation. But the same argument works for any
other variable: if ∂f/∂xi �= 0 at some point, then near that point it is possible to solve smoothly
for xi as a function of the other variables.


