Assignment \#2: Due Friday, 4/13/12 (UPDATED)

Reading:

- Page 116 (just read and understand the statement of Theorem 4.16).
- Pages 118-120 (Remark 4.20 through Remark 4.22).
- Section 7.1.

Written Assignment:

A. Suppose S is a connected surface. Prove that if either of the following is true, then S is orientable:
(a) The mean curvature of S is nowhere zero.
(b) The Gauss curvature of S is everywhere positive.
B. Prove the following corollary to Theorem 3.47: Suppose S is an oriented surface with positive Gauss curvature. Let the principal curvatures of S be denoted by k_{1}, k_{2} with $k_{1} \leq k_{2}$. If there is a point $p_{0} \in S$ where k_{1} achieves its minimum and k_{2} achieves its maximum, then S is totally umbilical.
C. Exercise 3.50 (page 94).
D. Exercise 3.51 (page 94).
E. Exercise (7) (page 95).
F. Suppose $H=\{(u, v): u>0\} \subset \mathbb{R}^{2}$ is the right half-plane, and $C \subset H$ is a simple curve, and $\alpha: I \rightarrow H$ is a local parametrization of C (not necessarily unit speed), written in the form $\alpha(t)=(a(t), b(t))$. Let $S_{C} \subset \mathbb{R}^{3}$ be the surface of revolution generated by C, and let $X: I \times \mathbb{R} \rightarrow \mathbb{R}^{3}$ be the map

$$
X(t, \theta)=(a(t) \cos \theta, a(t) \sin \theta, b(t))
$$

Then X, restricted to any rectangle of the form $I \times(k, k+2 \pi)$, is a local parametrization of S_{C} (you don't have to prove this either). Compute the principal curvatures, Gauss curvature, and mean curvature of S_{C} in terms of this parametrization. (In other words, compute $k_{i} \circ X, K \circ X$, and $H \circ X$ as functions of (t, θ).)
G. Let H be the right half-plane. For each of the following maps $\alpha: \mathbb{R} \rightarrow H$, the image $\alpha(\mathbb{R})$ is a simple curve in H (you don't have to prove this). Compute the Gauss and mean curvatures of the corresponding surfaces of revolution.
(a) $I=\mathbb{R}, \alpha(t)=(2+\cos t, \sin t)$ (this generates a torus of revolution).
(b) $I=\mathbb{R}, \alpha(t)=(\cosh t, t)$ (this generates a surface called a catenoid).
H. Let H be the right half plane, and let $a:(\pi / 2, \pi / 2) \longrightarrow H$ be the parametrized eurve given by $a(t)=(a(t), b(t))$, where

$$
\begin{aligned}
& a(t)=\frac{1}{2} \cos t \\
& b(t)=\int_{0}^{t} \sqrt{1-\frac{1}{4} \sin ^{2} u} d u
\end{aligned}
$$

If we let C be the image of a, then C is a simple enrve (you don't have to prove this). Show that the surface of revolution S_{C} has Gaus eurvature identically equal to 1, but that its primeipal eurvatures are not constant.
I. Let C be a simple eurve in the right half plane that admits a global parametrization, and let S_{C} be the surface of revelution it generates. Prove that S_{C} has identieally zero Gauss eurvature if and only if C is contained in a straight line.

