Reading:

- Sections 7.2, 7.3. (Skip 7.4.)
- Skim Section 7.5.

Written Assignment:

A. Let H be the right half-plane, and let $\alpha:(-\pi / 2, \pi / 2) \rightarrow H$ be the parametrized curve given by $\alpha(t)=(a(t), b(t))$, where

$$
\begin{aligned}
& a(t)=\frac{1}{2} \cos t \\
& b(t)=\int_{0}^{t} \sqrt{1-\frac{1}{4} \sin ^{2} u} d u
\end{aligned}
$$

If we let C be the image of α, then C is a simple curve (you don't have to prove this). Show that the surface of revolution S_{C} has Gauss curvature identically equal to 1 , but that its principal curvatures are not constant.
B. Let C be a simple curve in the right half-plane that admits a global parametrization, and let S_{C} be the surface of revolution it generates. Prove that S_{C} has identically zero Gauss curvature if and only if C is contained in a straight line.
C. Exercise 7.4 (page 208).
D. Exercise (2) (page 239).
E. Exercise (4) (page 239).
F. Let $S, S^{\prime} \subset \mathbb{R}^{3}$ be the following surfaces:

$$
\begin{array}{rlrl}
S & =\left\{(x, y, z): x^{2}+y^{2}>0, z=0\right\} & \text { (the } x y \text {-plane with the origin removed) } \\
S^{\prime} & =\left\{(x, y, z): x^{2}+y^{2}=\frac{1}{3} z^{2}, z>0\right\} & & \text { (the upper half of a cone). }
\end{array}
$$

Define a map $f: S \rightarrow \mathbb{R}^{3}$ by

$$
f(x, y, 0)=\frac{1}{2 \sqrt{x^{2}+y^{2}}}\left(x^{2}-y^{2}, 2 x y, \sqrt{3}\left(x^{2}+y^{2}\right)\right) .
$$

Show that f is a local isometry from S to S^{\prime}. Is it a global isometry?

