Math 443

Differential Geometry Assignment #8: Due Friday, 6/1/12

Written Assignment:

- A. Shifrin, Exercise 3.1 # 3, page 89.
- B. Suppose $S \subset \mathbb{R}^3$ is a surface with boundary such that S is diffeomorphic to a closed disk. Suppose further that its boundary curve is a closed geodesic. Prove that the Gauss curvature of S must be positive somewhere.
- C. Suppose $S \subset \mathbb{R}^3$ is a surface with boundary such that S is diffeomorphic to the cylinder $S^1 \times [0, 1]$. Suppose further that both boundary curves are closed geodesics. If the Gauss curvature of S is not identically zero, prove that it attains both positive and negative values.
- D. Let S be the paraboloid defined by $z = x^2 + y^2$, and for each r > 0, let S_r be the portion of S where $z \le r$. Verify the Gauss–Bonnet formula for S_r by computing each term separately.