Assignment \#8: Due Friday, 6/1/12

Written Assignment:

A. Shifrin, Exercise $3.1 \# 3$, page 89 .
B. Suppose $S \subset \mathbb{R}^{3}$ is a surface with boundary such that S is diffeomorphic to a closed disk. Suppose further that its boundary curve is a closed geodesic. Prove that the Gauss curvature of S must be positive somewhere.
C. Suppose $S \subset \mathbb{R}^{3}$ is a surface with boundary such that S is diffeomorphic to the cylinder $S^{1} \times[0,1]$. Suppose further that both boundary curves are closed geodesics. If the Gauss curvature of S is not identically zero, prove that it attains both positive and negative values.
D. Let S be the paraboloid defined by $z=x^{2}+y^{2}$, and for each $r>0$, let S_{r} be the portion of S where $z \leq r$. Verify the Gauss-Bonnet formula for S_{r} by computing each term separately.

