Theorem 5.7.15 (The Crossbar Theorem): If $\triangle ABC$ is a triangle and D is a point in the interior of $\angle BAC$, then there is a point G such that G lies on both \overrightarrow{AD} and \overrightarrow{BC} .

Proof: We shall prove the Crossbar Theorem by contradiction. To begin, let $\triangle ABC$ be a triangle and let D be a point in the interior of $\angle BAC$. Having that D is an interior point of $\angle BAC$, we know that the points D and C are on the same side of \overrightarrow{AB} and the points D and D are on the same side of \overrightarrow{AC} by the definition for the interior of an angle. Additionally, the definition of betweenness for rays tells us that the ray \overrightarrow{AD} is between the rays \overrightarrow{AB} and \overrightarrow{AC} .

Using the fourth part of the Protractor Postulate, we may state that since the ray \overrightarrow{AD} is between the rays \overrightarrow{AB} and \overrightarrow{AC} , then $\mu \angle BAD + \mu \angle DAC = \mu \angle BAC$.

Now, let us assume that the points B and C are on the same side of \overrightarrow{AD} . This will be our RAA hypothesis. Using this assumption with the fact that the points D and C are on the same side of \overrightarrow{AB} , we may use the definition of betweenness for rays to safely say that \overrightarrow{AC} is between \overrightarrow{AB} and \overrightarrow{AD} . Likewise, we may use the assumption with the fact that the points D and B are on the same side of \overrightarrow{AC} to safely say that \overrightarrow{AB} is between \overrightarrow{AC} and \overrightarrow{AD} . Thus we have that each ray is between the other two rays.

Using the fourth part of the Protractor Postulate with the fact that \overrightarrow{AB} is between \overrightarrow{AC} and \overrightarrow{AD} , we get that $\mu\angle CAB + \mu\angle BAD = \mu\angle CAD$. Because $\angle CAD = \angle DAC$ and $\angle CAB = \angle BAC$, we may exchange these terms in this equation and then substitute the equation in for $\mu\angle BAC$ in our earlier equation getting us $\mu\angle BAD + (\mu\angle BAC + \mu\angle BAD) = \mu\angle BAC$. Simplifying, we get that $\mu\angle BAC + 2\mu\angle BAD = \mu\angle BAC$. The Protractor Postulate defines that these measures are real numbers, so we may use the rules of arithmetic to get that $2\mu\angle BAD = 0^\circ$ and consequently that $\mu\angle BAD = 0^\circ$. The second part of the Protractor Postulate affirms that $\mu\angle BAD = 0^\circ$ if and only if $\overrightarrow{AB} = \overrightarrow{AD}$ and as such A, B and D are collinear.

However a problem arises when we realize that since D lies on the ray \overrightarrow{AB} , it cannot be on the same side of \overrightarrow{AB} as the point C and therefore could not be an interior point of $\angle BAC$ but this would contradict the primary hypothesis that D is in fact an interior point. Thus our assumption is false and the points B and C must therefore lie on opposite sides of \overrightarrow{AD} .

The second part of the Plane Separation Postulate tells us that since the points B and C are on opposite sides of \overrightarrow{AD} then the line segment \overline{BC} intersects the line \overrightarrow{AD} . Let us call this point of intersection G. Now we know that G lies on \overrightarrow{AD} and \overline{BC} but we need to check to be certain that G lies on the ray \overrightarrow{AD} and to do this we will use another contradiction.

First let us note that since G is a point on \overline{BC} it is an interior point of $\angle BAC$. This is clear because G is between B and C and since there is only one point of intersection for every pair of lines according to a previously proven theorem, \overline{GC} does not intersect \overline{AB} and \overline{BG} does not intersect \overline{AC} because their would be points of intersection are B and C respectively, and those points do not lie in \overline{GC} and \overline{BG} respectively.

Now, let us assume that the point G does not lie on the ray \overrightarrow{AD} , then since it lies on the line \overleftarrow{AD} , it must lie on the opposite ray \overrightarrow{AG} because this is merely an application of set theory since G belongs to the set \overrightarrow{AD} minus the set \overrightarrow{AD} . Observing now that \overrightarrow{AD} and \overrightarrow{AG} are opposite rays, we see that G must be between G and G otherwise either G would lie on the ray G or G would lie on the ray G.

Additionally, we have the important fact that \overrightarrow{GD} intersects \overrightarrow{AB} and \overrightarrow{GD} intersects \overrightarrow{AC} , and in both cases this intersection occurs at the point A and we know that it occurs only at this point, again by a previously proven theorem. Because the lines intersect and the point A is between G and G, we know that the line segment G intersects both G and G and G intersects both G and G by the Plane Separation Postulate and the definition for points lying on opposite sides of a line.

On the other hand, returning back to the fact that D and G are interior points of $\angle BAC$, we know that they are both on the same side of \overrightarrow{AB} as the point G and they are both on the same side of \overrightarrow{AC} as the point G and thus they must both be on the same side of \overrightarrow{AB} and \overrightarrow{AC} as one another, but this contradicts what we just found, so our assumption must be false and G must lie on the ray \overrightarrow{AD} . Q.E.D.