Axioms of Neutral Geometry

The Existence Postulate. The collection of all points forms a nonempty set. There is more than one point in that set.

The Incidence Postulate. Every line is a set of points. For every pair of distinct points A and B there is exactly one line ℓ such that $A \in \ell$ and $B \in \ell$.

The Ruler Postulate. For every pair of points P and Q there exists a real number PQ, called the **distance from** P to Q. For each line ℓ there is a one-to-one correspondence from ℓ to \mathbb{R} such that if P and Q are points on the line that correspond to the real numbers x and y, respectively, then PQ = |x - y|.

The Plane Separation Postulate. For every line ℓ , the points that do not lie on ℓ form two disjoint, nonempty sets H_1 and H_2 , called half-planes bounded by ℓ or sides of ℓ , such that the following conditions are satisfied.

- **1.** Each of H_1 and H_2 is convex.
- **2.** If $P \in H_1$ and $Q \in H_2$, then \overline{PQ} intersects ℓ .

The Protractor Postulate. For every angle $\angle ABC$ there exists a real number $\mu \angle ABC$, called the **measure** of $\angle ABC$. For every half-rotation HR(A, O, B), there is a one-to-one correspondence g from HR(A, O, B) to the interval $[0, 180] \subset \mathbb{R}$, which sends \overrightarrow{OA} to 0 and sends the ray opposite \overrightarrow{OA} to 180, and such that if \overrightarrow{OC} and \overrightarrow{OD} are any two distinct, nonopposite rays in HR(A, O, B), then

$$\mu \angle COD = \left| g(\overrightarrow{OD}) - g(\overrightarrow{OC}) \right|.$$

The Side-Angle-Side Postulate. If $\triangle ABC$ and $\triangle DEF$ are two triangles such that $\overline{AB} \cong \overline{DE}$, $\angle ABC \cong \angle DEF$, and $\overline{BC} \cong \overline{EF}$, then $\triangle ABC \cong \triangle DEF$.

The Neutral Area Postulate. Associated with each polygonal region R there is a nonnegative number $\alpha(R)$, called the **area of R**, such that the following conditions are satisfied.

- 1. (Congruence) If two triangles are congruent, then their associated triangular regions have equal areas.
- **2.** (Additivity) If R is the union of two nonoverlapping polygonal regions R_1 and R_2 , then $\alpha(R) = \alpha(R_1) + \alpha(R_2)$.

Theorems of Neutral Geometry

Theorem 5.3.7. If ℓ and m are two distinct, nonparallel lines, then there exists exactly one point P such that P lies on both ℓ and m.

Theorem 5.4.6. If P and Q are any two points, then

PQ = QP,
 PQ ≥ 0, and
 PQ = 0 if and only if P = Q.

Corollary 5.4.7. A * C * B if and only if B * C * A.

Theorem 5.4.14 (The Ruler Placement Theorem). For every pair of distinct points P and Q, there is a coordinate function $f: \overleftrightarrow{PQ} \to \mathbb{R}$ such that f(P) = 0 and f(Q) > 0.

Proposition 5.5.4. Let ℓ be a line and let A and B be points that do not lie on ℓ . The points A and B are on the same side of ℓ if and only if $\overline{AB} \cap \ell = \emptyset$. The points A and B are on opposite sides of ℓ if and only if $\overline{AB} \cap \ell \neq \emptyset$.

Theorem 5.5.10 (Pasch's Theorem). Let $\triangle ABC$ be a triangle and let ℓ be a line such that none of A, B, and C lies on ℓ . If ℓ intersects \overline{AB} , then ℓ also intersects either \overline{AC} or \overline{BC} .

Theorem A.1 (Betweenness Theorem for Points). Suppose A, B, and C are distinct points all lying on a single line ℓ . Then the following statements are equivalent:

- (a) AB + BC = AC (i.e., A * B * C).
- (b) B lies in the interior of the line segment \overline{AC} .
- (c) B lies on the ray \overrightarrow{AC} and AB < AC.
- (d) For any coordinate function $f: \ell \to \mathbb{R}$, the coordinate f(B) is between f(A) and f(C).

Corollary A.2. If A, B, and C are three distinct collinear points, then exactly one of them lies between the other two.

Theorem A.3 (Existence and Uniqueness of Midpoints) Every line segment has a unique midpoint.

Theorem A.4 (Ray Theorem) Suppose A and B are distinct points, and f is a coordinate function for the line \overrightarrow{AB} satisfying f(A) = 0. Then a point $P \in \overrightarrow{AB}$ is an interior point of \overrightarrow{AB} if and only if its coordinate has the same sign as that of B.

Corollary A.5. If A and B are distinct points, and f is a coordinate function for the line \overrightarrow{AB} satisfying f(A) = 0 and f(B) > 0, then $\overrightarrow{AB} = \{P \in \overleftrightarrow{AB} : f(P) \ge 0\}$.

Corollary A.6. If A, B, and C are distinct collinear points, then \overrightarrow{AB} and \overrightarrow{AC} are opposite rays if and only if B * A * C, and otherwise they are equal.

Corollary A.7 (Segment Construction Theorem) If \overline{AB} is a line segment and \overline{CD} is a ray, there is a unique interior point $E \in \overrightarrow{CD}$ such that $\overline{CE} \cong \overline{AB}$.

Theorem A.8 (The Y-Theorem) Suppose ℓ is a line, A is a point on ℓ , and B is a point not on ℓ . Then every interior point of \overrightarrow{AB} is on the same side of ℓ as B.

Theorem A.10. If $\angle ABC$ is any angle, then $0^{\circ} < \mu \angle ABC < 180^{\circ}$.

Theorem A.11 (Angle Construction Theorem) Let A, O, and B be noncollinear points. For every real number m such that 0 < m < 180, there is a unique ray \overrightarrow{OC} with vertex O and lying on the same side of \overrightarrow{OA} as B such that $\mu \angle AOC = m^{\circ}$.

Theorem A.12 (Linear Pair Theorem) If two angles form a linear pair, they are supplementary.

Theorem A.13 (Vertical Angles Theorem) Vertical angles are congruent.

Theorem A.14 (Four Right Angles Theorem) If $\ell \perp m$, then ℓ and m form four right angles.

Theorem A.15 (Existence and Uniqueness of Perpendicular Bisectors) Every line segment has a unique perpendicular bisector.

Theorem A.16 (Betweenness vs. Betweenness) Let A, O, and C be three noncollinear points and let B be a point on the line \overrightarrow{AC} . The point B is between points A and C if and only if the ray \overrightarrow{OB} is between rays \overrightarrow{OA} and \overrightarrow{OC} .

Theorem A.18 (Betweenness Theorem for Rays) Suppose O, A, B, and C are four distinct points such that no two of the rays \overrightarrow{OA} , \overrightarrow{OB} , and \overrightarrow{OC} are equal and no two are opposite. Then the following statements are equivalent:

- (a) $\mu \angle AOB + \mu \angle BOC = \mu \angle AOC$.
- (b) \overrightarrow{OB} lies in the interior of $\angle AOC$ (i.e., $\overrightarrow{OA} * \overrightarrow{OB} * \overrightarrow{OC}$).
- (c) \overrightarrow{OB} lies in the half-rotation $\operatorname{HR}(A, O, C)$ and $\mu \angle AOB < \mu \angle AOC$.
- (d) \overrightarrow{OA} , \overrightarrow{OB} , and \overrightarrow{OC} all lie in some half-rotation, and if g is the coordinate function cooresponding to any such half-rotation, the coordinate $g(\overrightarrow{OB})$ is between $g(\overrightarrow{OA})$ and $g(\overrightarrow{OC})$.

Corollary A.19. If \overrightarrow{OA} , \overrightarrow{OB} , and \overrightarrow{OC} are three rays that all lie on one half-rotation and such that no two are equal and no two are opposite, then exactly one is between the other two.

Corollary from class. If $\overrightarrow{OA} * \overrightarrow{OB} * \overrightarrow{OC}$, then A and B are on opposite sides of \overleftarrow{OC} .

Theorem A.20 (Existence and Uniqueness of Angle Bisectors) Every angle has a unique angle bisector.

Theorem A.21 (The Crossbar Theorem) If $\triangle ABC$ is a triangle and \overrightarrow{AD} is a ray between \overrightarrow{AB} and \overrightarrow{AC} , then \overrightarrow{AD} intersects \overrightarrow{BC} .

Theorem 5.8.5 (Isosceles Triangle Theorem). If $\triangle ABC$ is a triangle and $\overline{AB} \cong \overline{AC}$, then $\angle ABC \cong \angle ACB$.

Theorem 6.2.1 (ASA). If $\triangle ABC$ and $\triangle DEF$ are two triangles such that $\angle CAB \cong \angle FDE$, $\overline{AB} \cong \overline{DE}$, and $\angle ABC \cong \angle DEF$, then $\triangle ABC \cong \triangle DEF$.

Theorem 6.2.2 (Converse to the Isosceles Triangle Theorem). If $\triangle ABC$ is a triangle such that $\angle ABC \cong \angle ACB$, then $\overline{AB} \cong \overline{AC}$.

Exercise 6.3 (Construction of Perpendiculars). For every line ℓ and for every point P that lies on ℓ , there exists a unique line m such that P lies on m and $m \perp \ell$.

Theorem 6.2.3 (Existence of Perpendicular from an External Point). For every line ℓ and for every external point P, there exists a line m such that P lies on m and $m \perp \ell$.

Theorem 6.2.4 (Copying a Triangle). If $\triangle ABC$ is a triangle, \overline{DE} is a segment such that $\overline{DE} \cong \overline{AB}$, and H is a half-plane bounded by \overrightarrow{DE} , then there is a unique point $F \in H$ such that $\triangle DEF \cong \triangle ABC$.

Theorem 6.3.2 (Exterior Angle Theorem). The measure of an exterior angle for a triangle is strictly greater than the measure of either remote interior angle.

Corollary 6.3.3 (Uniqueness of Perpendiculars). For every line ℓ and for every external point P, there exists exactly one line m such that P lies on m and $m \perp \ell$.

Theorem 6.3.4 (AAS). If $\triangle ABC$ and $\triangle DEF$ are two triangles such that $\angle ABC \cong \angle DEF$, $\angle BCA \cong \angle EFD$, and $\overline{AC} \cong \overline{DF}$, then $\triangle ABC \cong \triangle DEF$.

Theorem 6.3.6 (Hypotenuse-Leg Theorem). If $\triangle ABC$ and $\triangle DEF$ are two right triangles with right angles at the vertices C and F, respectively, $\overline{AB} \cong \overline{DE}$, and $\overline{BC} \cong \overline{EF}$, then $\triangle ABC \cong \triangle DEF$.

Theorem 6.3.7 (SSS). If $\triangle ABC$ and $\triangle DEF$ are two triangles such that $\overline{AB} \cong \overline{DE}$, $\overline{BC} \cong \overline{EF}$, $\overline{CA} \cong \overline{FD}$, then $\triangle ABC \cong \triangle DEF$.

Theorem 6.4.1 (Scalene Inequality). Let A, B, and C be three noncollinear points. Then AB > BC if and only if $\mu(\angle ACB) > \mu(\angle BAC)$.

Theorem 6.4.2 (Triangle Inequality). If A, B, and C are three noncollinear points, then AC < AB + BC.

Theorem 6.4.3 (Hinge Theorem). If $\triangle ABC$ and $\triangle DEF$ are two triangles such that AB = DE, AC = DF, and $\mu(\angle BAC) < \mu(\angle EDF)$, then BC < EF.

Theorem 6.4.4. Let ℓ be a line, let P be an external point, and let F be the foot of the perpendicular from P to ℓ . If R is any point on line ℓ that is different from F, then PR > PF.

Lemma from class (Interior Foot Lemma). In $\triangle ABC$, if $\angle A$ and $\angle B$ are acute, then the foot of the perpendicular from C to \overleftrightarrow{AB} lies in the interior of \overleftrightarrow{AB} .

Theorem 6.4.6 (Pointwise Characterization of Angle Bisector). Let A, B, and C be three noncollinear points and let P be a point in the interior of $\angle BAC$. Then P lies on the angle bisector of $\angle BAC$ if and only if $d(P, \overrightarrow{AB}) = d(P, \overrightarrow{AC})$.

Theorem 6.4.7 (Pointwise Characterization of Perpendicular Bisector). Let A and B be distinct points. A point P lies on the perpendicular bisector of \overline{AB} if and only if PA = PB.

Theorem 6.5.2 (Alternate Interior Angles Theorem). If ℓ and ℓ' are two lines cut by a transversal t in such a way that a pair of alternate interior angles is congruent, then ℓ is parallel to ℓ' .

Corollary 6.5.4 (Corresponding Angles Theorem). If ℓ and ℓ' are two lines cut by a transversal t in such a way that two corresponding angles are congruent, then ℓ is parallel to ℓ' .

Corollary 6.5.5 (Supplementary Angles Theorem). If ℓ and ℓ' are two lines cut by a transversal t in such a way that two nonalternating angles on the same side of t are supplements, then ℓ is parallel to ℓ' .

Corollary 6.5.6 (Existence of Parallels). If ℓ is a line and P is an external point, then there is a line m such that P lies on m and m is parallel to ℓ .

Addendum (Existence of a Parallel with a Common Perpendicular). If ℓ is a line and P is an external point, then there is a line m that is parallel to ℓ and contains P, and a line t through P that is a common perpendicular for ℓ and m.

Corollary 6.5.8. (Common Perpendicular Theorem). If ℓ and ℓ' are distinct lines that admit a common perpendicular, then they are parallel.

Theorem 6.6.2 (Saccheri–Legendre Theorem). If $\triangle ABC$ is any triangle, then $\sigma(\triangle ABC) \leq 180^{\circ}$.

Theorem 6.9.2 (Additivity of Defect).

- 1. If $\triangle ABC$ is a triangle and E is a point in the interior of \overline{BC} , then $\delta(\triangle ABC) = \delta(\triangle ABE) + \delta(\triangle ECA)$.
- 2. If $\Box ABCD$ is a convex quadrilateral, then $\delta(\Box ABCD) = \delta(\triangle ABC) + \delta(\triangle ACD)$.

Theorem 6.9.10 (Properties of Saccheri quadrilaterals). If $\Box ABCD$ is a Saccheri quadrilateral with base \overline{AB} , then

- 1. the diagonals \overline{AC} and \overline{BD} are congruent,
- 2. the summit angles $\angle BCD$ and $\angle ADC$ are congruent,
- 3. the segment joining the midpoint of \overline{AB} to the midpoint of \overline{CD} is perpendicular to both \overline{AB} and \overline{CD} ,
- 4. $\Box ABCD$ is a parallelogram,
- 5. $\Box ABCD$ is a convex quadrilateral,
- 6. the summit angles $\angle BCD$ and $\angle ADC$ are acute.

Theorem 6.9.11 (Properties of Lambert quadrilaterals). If $\Box ABCD$ is a Lambert quadrilateral with right angles at vertices A, B, and C, then

- 1. $\Box ABCD$ is a parallelogram,
- 2. $\Box ABCD$ is a convex quadrilateral, and
- 3. $\angle ADC$ is acute.

Theorem 6.10.1 (The Universal Hyperbolic Theorem). In every model of neutral geometry, either the Euclidean parallel postulate or the hyperbolic parallel postulate holds.

Axioms of Euclidean Geometry

The Seven Postulates of Neutral Geometry.

The Euclidean Parallel Postulate. For every line ℓ and for every point P that does not lie on ℓ , there is exactly one line m such that P lies on m and $m \parallel \ell$.

The Euclidean Area Postulate. If R is a rectangular region, then $\alpha(R) = length(R) \times width(R)$.

Theorems of Euclidean Geometry

(All the theorems of neutral geometry are valid in Euclidean geometry.)

Theorem B.2 (Converse to the Alternate Interior Angles Theorem). If two parallel lines are cut by a transversal, then both pairs of alternate interior angles are congruent.

Corollary B.3 (Converse to the Corresponding Angles Theorem). If two parallel lines are cut by a transversal, then all four pairs of corresponding angles are congruent.

Corollary B.4 (Converse to the Supplementary Angles Theorem). If two parallel lines are cut by a transversal, then each pair of interior angles lying on the same side of the transversal is supplementary.

Theorem B.5 (Proclus's Lemma). If ℓ and ℓ' are parallel lines and $t \neq \ell$ is a line such that t intersects ℓ , then t also intersects ℓ' .

Theorem B.6 (Parallels and Perpendiculars) Suppose ℓ and ℓ' are parallel lines.

- (a) If t is a transversal such that $t \perp \ell$, then $t \perp \ell'$.
- (b) If m and m' are distinct lines such that $m \perp \ell$ and $m' \perp \ell'$, then $m \parallel m'$.

Theorem B.7 (Transitivity of Parallelism). If ℓ , m, and n are distinct lines such that $\ell \parallel m$ and $m \parallel n$, then $\ell \parallel n$.

Theorem B.8 (Angle-Sum Theorem). If $\triangle ABC$ is a triangle, then $\sigma(\triangle ABC) = 180^{\circ}$.

Corollary B.9. In any triangle, the sum of the measures of any two interior angles is less than 180° .

Corollary B.10. In any triangle, at least two of the angles are acute.

Corollary B.11. In any triangle, the measure of each exterior angle is equal to the sum of the measures of the two remote interior angles.

Theorem B.12 (The Euclidean Parallel Postulate Implies Euclid's Postulate V) If ℓ and ℓ' are two lines cut by a transversal t in such a way that the sum of the measures of the two interior angles on one side of t is less than 180°, then ℓ and ℓ' intersect on that side of t.

Theorem B.13 (Euclid's Postulate V Implies the Euclidean Parallel Postulate). The six axioms of Neutral Geometry together with Euclid's Postulate V imply the Euclidean Parallel Postulate.

Theorem B.14 (Angle-Sum Theorem for Convex Quadrilaterals). If $\Box ABCD$ is a convex quadrilateral, then $\sigma(\Box ABCD) = 360^{\circ}$.

Theorem B.15 (Truncated Triangle Theorem). Suppose $\triangle ABC$ is a triangle, and D and E are points such that A * D * B and A * E * C. Then $\Box BCED$ is a convex quadrilateral.

Theorem from class. A quadrilateral is convex if and only if both pairs of opposite sides are semiparallel.

Theorem B.16. Every trapezoid is a convex quadrilateral.

Corollary B.17. Every parallelogram is a convex quadrilateral.

Theorem B.18. A quadrilateral is convex if and only if its diagonals intersect. If they do intersect, then the intersection point is an interior point of both diagonals.

Theorem B.19. Every parallelogram has the following properties.

- (a) Both pairs of opposite sides are congruent.
- (b) Both pairs of opposite angles are congruent.
- (c) Its diagonals bisect each other.

Theorem B.20. Every rectangle has the following properties.

- (a) It is a parallelogram.
- (b) Its diagonals are congruent.

Theorem B.21. Every rhombus has the following properties.

- (a) It is a parallelogram.
- (b) Its diagonals intersect perpendicularly.

Theorem 9.1.7. If $\triangle ABC$ is a triangle and E is a point on the interior of \overline{AC} , then $\blacktriangle ABC = \bigstar ABE \cup \bigstar EBC$. Furthermore, $\bigstar ABE$ and $\bigstar EBC$ are nonoverlapping regions. Thus $\alpha(\triangle ABC) = \alpha(\triangle ABE) + \alpha(\triangle EBC)$.

Exercise 9.3. Let $\Box ABCD$ be a convex quadrilateral. Then $\blacktriangle ABC \cup \blacktriangle CDA = \blacktriangle DAB \cup \blacktriangle BCD$, and each pair of triangles is nonoverlapping. Thus $\alpha(\Box ABCD) = \alpha(\triangle ABC) + \alpha(\triangle CDA) = \alpha(\triangle DAB) + \alpha(\triangle BCD)$.

Theorem 9.2.5. The area of a triangular region is one-half the length of the base times the height.

Exercise 9.8. The area of a parallelogram is the length of the base times the height.

Exercise 9.11. The area of a trapezoid is the height times the average of the lengths of the bases.

Theorem 9.2.8 (The Pythagorean Theorem). Suppose $\triangle ABC$ is a right triangle with right angle $\angle C$, and let a, b, and c denote the lengths of the sides opposite A, B, and C, respectively. Then $a^2 + b^2 = c^2$.

Theorem C.12 (Converse to the Pythagorean Theorem). Suppose $\triangle ABC$ is a triangle, and let a, b, and c denote the lengths of the sides opposite A, B, and C, respectively. If $a^2 + b^2 = c^2$, then $\angle C$ is a right angle.

Theorem C.1 (AA Similarity Theorem). *If* $\triangle ABC$ *and* $\triangle DEF$ *are triangles such that* $\angle A \cong \angle D$ *and* $\angle B \cong \angle E$, *then* $\triangle ABC \sim \triangle DEF$.

Theorem C.2 (Similar Triangle Construction Theorem). If $\triangle ABC$ is a triangle, \overline{DE} is a segment, and H is a half-plane bounded by \overleftrightarrow{DE} , then there is a unique point $F \in H$ such that $\triangle ABC \sim \triangle DEF$.

Lemma C.3 (Sliding Lemma). Suppose $\triangle ABC$ and $\triangle A'BC$ are two distinct triangles that have a common side \overrightarrow{BC} , such that $\overrightarrow{AA'} \parallel \overrightarrow{BC}$. Then $\alpha(\triangle ABC) = \alpha(\triangle A'BC)$.

Lemma C.4. Suppose $\triangle ABC$ is a triangle, and D is a point such that B * D * C. Then

$$\frac{\alpha(\triangle ABD)}{\alpha(\triangle ABC)} = \frac{BD}{BC}.$$

Theorem C.5 (The Side-Splitter Theorem). Suppose $\triangle ABC$ is a triangle, and ℓ is a line parallel to \overrightarrow{BC} that intersects \overrightarrow{AB} at an interior point D. Then ℓ also intersects \overrightarrow{AC} at an interior point E, and

$$\frac{AD}{AB} = \frac{AE}{AC}.$$

Theorem C.6 (Fundamental Theorem on Similar Triangles). If $\triangle ABC \sim \triangle DEF$, then

$$\frac{AB}{DE} = \frac{AC}{DF} = \frac{BC}{EF}.$$
(0.1)

Corollary C.7. If $\triangle ABC \sim \triangle DEF$, then there is a positive number r such that

$$AB = r \cdot DE$$
, $AC = r \cdot DF$, $BC = r \cdot EF$.

Theorem C.8 (SAS Similarity Theorem). If $\triangle ABC$ and $\triangle DEF$ are triangles such that $\angle A \cong \angle D$ and AB/DE = AC/DF, then $\triangle ABC \sim \triangle DEF$.

Theorem C.9 (SSS Similarity Theorem). If $\triangle ABC$ and $\triangle DEF$ are triangles such that AB/DE = AC/DF = BC/EF, then $\triangle ABC \sim \triangle DEF$.

Theorem C.10 (Area Scaling Theorem). If two triangles are similar, then the ratio of their areas is the square of the ratio of any two corresponding sides; that is, if $\triangle ABC \sim \triangle DEF$ and $AB = r \cdot DE$, then $\alpha(\triangle ABC) = r^2 \cdot \alpha(\triangle DEF)$.

Theorem 10.2.1. If γ is a circle and ℓ is a line, then the number of points in $\gamma \cap \ell$ is 0, 1, or 2.

Theorem 10.2.4 (Tangent Line Theorem). Let t be a line, $\gamma = \mathcal{C}(O, r)$ a circle, and P a point of $t \cap \gamma$. The line t is tangent to the circle γ at the point P if and only if $\overrightarrow{OP} \perp t$.

Theorem 10.2.5. If γ is a circle and t is a tangent line that meets γ at P, then every point of t except for P is outside γ .

Theorem 10.2.6 (Secant Line Theorem). If $\gamma = C(O, r)$ is a circle and ℓ is a secant line that intersects γ at distinct points P and Q, then O lies on the perpendicular bisector of the chord \overline{PQ} .

Theorem 10.2.7. If γ is a circle and ℓ is a secant line such that ℓ intersects γ at points P and Q, then every point on the interior of \overline{PQ} is inside γ and every point of $\ell \setminus \overline{PQ}$ is outside γ .

Theorem from class. If γ and γ' are two distinct circles, then the number of points in $\gamma \cap \gamma'$ is 0, 1, or 2.

Theorem 10.2.12 (Tangent Circles Theorem). If the circles $\gamma_1 = C(O_1, r_1)$ and $\gamma_2 = C(O_2, r_2)$ are tangent at P, then the centers O_1 and O_2 are distinct and the three points O_1 , O_2 , and P are collinear. Furthermore, the circles share a common tangent line at P.

Theorem from class (Circle-Line Theorem). If γ is a circle and ℓ is a line that contains a point inside γ , then ℓ is a secant line for γ .

Theorem from class (Converse to the Triangle Inequality). If a, b, and c are three positive real numbers such that each one is less than the sum of the other two, then there exists a triangle whose side lengths are a, b, and c.

Theorem from class (Two Circles Theorem). Let γ and γ' be two distinct circles. If there exists a point that lies on γ' and is inside γ , and there exists another point that lies on γ' and is outside γ , then $\gamma \cap \gamma'$ consists of exactly two points.

Theorem 10.3.2 (Circumscribed Circle Theorem). Every Euclidean triangle has a unique circumscribed circle. The three perpendicular bisectors of the sides of any triangle are concurrent and meet at the circumcenter of the triangle.

Theorem 10.3.8 (Inscribed Circle Theorem). Every triangle has a unique inscribed circle. The bisectors of the interior angles in any triangle are concurrent and the point of concurrency is the incenter of the triangle.

Theorem 10.4.1. Let $\triangle ABC$ be a triangle and let M be the midpoint of \overline{AB} . If AM = MC, then $\angle ACB$ is a right angle.

Corollary 10.4.2 (An angle inscribed in a semicircle is a right angle). If the vertices of triangle $\triangle ABC$ lie on a circle and \overline{AB} is a diameter of that circle, then $\angle ACB$ is a right angle.

Theorem 10.4.3. Let $\triangle ABC$ be a triangle and let M be the midpoint of \overline{AB} . If $\angle ACB$ is a right angle, then AM = MC.

Corollary 10.4.4 (Converse to Corollary 10.4.2). If $\angle ACB$ is a right angle, then \overline{AB} is a diameter of the circle that circumscribes $\triangle ABC$.

Theorem 10.4.5 (The 30-60-90 Theorem). If the interior angles in triangle $\triangle ABC$ measure 30° , 60° , and 90° , then the length of the side opposite the 30° angle is one half the length of the hypotenuse.

Theorem 10.4.6 (Converse to the 30-60-90 Theorem). If $\triangle ABC$ is a right triangle such that the length of one leg is one-half the length of the hypotenuse, then the interior angles of the triangle measure 30° , 60° , and 90° .

Theorem 10.6.6. If $\mathcal{C}(O, R)$ and $\mathcal{C}(O', r')$ are two circles, and C, C' are their respective circumferences, then C/r = C'/r'. Thus there is a universal constant π such that every circle of radius r has circumference $2\pi r$.

Theorem from class. If $\mathcal{C}(O, R)$ and $\mathcal{C}(O', r')$ are two circles, and A and A' are their respective areas, then $A/r^2 = A'/r'^2$. Thus there is a universal constant k such that every circle of radius r has area kr^2 .

Theorem 10.6.11 (Archimedes' Theorem). If γ is a circle of radius r, C is the circumference of γ , and A is the area of the associated circular region, then $A = \frac{1}{2}rC$.

Corollary 10.6.12. The area of every circle of radius r is πr^2 .

Theorem 12.2.6. The composition of two isometries is an isometry. The inverse of an isometry is an isometry.

Theorem 12.2.7 (Properties of Isometries). Let $T: \mathbb{P} \to \mathbb{P}$ be an isometry. Then T preserves the following geometric relationships.

- **1.** T preserves collinearity; that is, if P, Q, and R are three collinear points, then T(P), T(Q), and T(R) are collinear.
- **2.** T preserves betweenness of points; that is, if P, Q, and R are three collinear points such that P * Q * R, then T(P) * T(Q) * T(R).
- **3.** T preserves segments and their lengths; that is, if A and B are points and A' and B' are their images under T, then $T(\overline{AB}) = \overline{A'B'}$ and $\overline{A'B'} \cong \overline{AB}$.
- **4.** T preserves lines; that is, if ℓ is a line, then $T(\ell)$ is a line.
- 5. T preserves betweenness of rays; that is, if \overrightarrow{OP} , \overrightarrow{OQ} , and \overrightarrow{OR} are three rays such that \overrightarrow{OP} is between \overrightarrow{OQ} and \overrightarrow{OR} , then $\overrightarrow{O'P'}$ is between $\overrightarrow{O'Q'}$ and $\overrightarrow{O'R'}$.
- **6.** T preserves angles and their measures; that is, if $\angle BAC$ is an angle, then $T(\angle BAC)$ is an angle and $T(\angle BAC) \cong \angle BAC$.
- 7. T preserves triangles and their measures; that is, if $\triangle BAC$ is a triangle, then $T(\triangle BAC)$ is a triangle and $T(\triangle BAC) \cong \triangle BAC$.
- 8. T preserves circles and their radii; that is, if γ is a circle with center O and radius r, then $T(\gamma)$ is a circle with center T(O) and radius r.
- **9.** T preserves polygonal regions and their areas; that is, if R is a polygonal region, then T(R) is a polygonal region and $\alpha(T(R)) = \alpha(R)$.
- 10 (added in class). T preserves half-planes; that is, if ℓ is a line and P and Q are points not on ℓ , then T(P) and T(Q) are on the same side of $T(\ell)$ if and only if P and Q are on the same side of ℓ .

Theorem 12.2.8 (Fundamental Theorem of Isometries). If $\triangle ABC$ and $\triangle DEF$ are two triangles with $\triangle ABC \cong \triangle DEF$, then there exists a unique isometry T such that T(A) = D, T(B) = E, and T(C) = F.

Corollary 12.2.9 (An Isometry is Determined by Its Action on Three Noncollinear Points). If f and g are two isometries and A, B, and C are three noncollinear points such that f(A) = g(A), f(B) = g(B), and f(C) = g(C), then f(P) = g(P) for every point P.

Corollary 12.2.11. Every isometry of the plane can be expressed as a composition of reflections. The number of reflections required is at most three.

Theorem 12.3.4 (First Rotation Theorem). An isometry is a rotation if and only if it is a composition of reflections through two nonparallel lines.

Theorem 12.3.5 (First Translation Theorem). An isometry is a translation if and only if it is a composition of reflections through two lines that are either identical or parallel.

Theorem 12.4.7 (Classification of Euclidean Motions). Every Euclidean motion is either the identity, a reflection, a rotation, or a glide reflection.

Axioms of Hyperbolic Geometry

The Seven Postulates of Neutral Geometry.

The Hyperbolic Parallel Postulate. For every line ℓ and for every point P that does not lie on ℓ , there are at least two lines m and n such that P lies on both m and n and both m and n are parallel to ℓ .

Theorems of Hyperbolic Geometry

(All the theorems of neutral geometry are valid in hyperbolic geometry.)

Theorem 8.2.1 (Triangle Angle-Sums in Hyperbolic Geometry). For every triangle $\triangle ABC$, $\sigma(\triangle ABC) < 180^{\circ}$.

Theorem 8.2.1 (Quadrilateral Angle-Sums in Hyperbolic Geometry). For every quadrilateral $\Box ABCD$, $\sigma(\Box ABCD) < 360^{\circ}$.

Theorem 8.2.3. There does not exist a rectangle.

Corollary 8.2.4 (Positivity of Defect). For every triangle $\triangle ABC$, $0^{\circ} < \delta(\triangle ABC) < 180^{\circ}$.

Theorem 8.2.7. In a Lambert quadrilateral, the length of a side between two right angles is strictly less than the length of the opposite side.

Corollary 8.2.9. In a Saccheri quadrilateral, the length of the altitude is less than the length of a side.

Corollary 8.2.10 In a Saccheri quadrilateral, the length of the summit is greater than the length of the base.

Theorem 8.2.11 (AAA Congruence Theorem). If $\triangle ABC$ is similar to $\triangle DEF$, then $\triangle ABC$ is congruent to $\triangle DEF$.

Theorem 8.3.1. If ℓ is a line, P is an external point, and m is a line such that P lies on m, then there exists at most one point Q such that $Q \neq P$, Q lies on m, and $d(Q, \ell) = d(P, \ell)$.

Theorem 8.3.3. If ℓ and m are parallel lines and there exist two points on m that are equidistant from ℓ , then ℓ and m admit a common perpendicular.

Theorem 8.3.4. If lines ℓ and m admit a common perpendicular, then that common perpendicular is unique.