1. Show that every complex manifold has a canonical orientation, uniqueley determined by the following two properties:
(a) The frame $\left(\partial / \partial x^{1}, \partial / \partial y^{1}, \ldots, \partial / \partial x^{n}, \partial / \partial y^{n}\right)$ is oriented for \mathbb{C}^{n} with its standard complex structure.
(b) Every local biholomorphism is orientation-preserving.
2. Let $U \subset \mathbb{C}^{n}$ be an open set, and let $F: U \rightarrow \mathbb{C}^{m}$ be a smooth map. Show that F is holomorphic if and only if $F_{*} \circ J_{\mathbb{C}^{n}}=J_{\mathbb{C}^{m}} \circ F_{*}$.
3. Let (M, J) be an almost complex manifold, and define $\Lambda^{p, q} M$ just as we did for complex manifolds. Show that the following are equivalent:
(a) J is integrable.
(b) For each pair of nonnegative integers p, q, the exterior derivative d maps sections of $\Lambda^{p, q} M$ to sections of $\Lambda^{p+1, q} M \oplus \Lambda^{p, q+1} M$.
(c) d maps sections of $\Lambda^{0,1} M$ to sections of $\Lambda^{1,1} M \oplus \Lambda^{0,2} M$.
4. Let (M, g) and (N, h) be Riemannian manifolds. A smooth map $F: M \rightarrow N$ is said to be conformal if $F^{*} h=\lambda g$ for some smooth, positive function λ on M.
(a) Let (M, g) and (N, h) be oriented Riemannian 2-manifolds, and give M and N the complex structures determined by their metrics and orientations. Suppose $F: M \rightarrow N$ is a local diffeomorphism. Show that F is holomorphic if and only if it is conformal and orientation-preserving.
(b) Give examples of diffeomorphisms $F, G: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}$ such that F is holomorphic but not conformal, and G is conformal and orientation-preserving but not holomorphic.
5. A map $F: \mathbb{C P}^{1} \rightarrow \mathbb{C P}^{n}$ is called rational if it is of the form

$$
F\left(\left[z^{1}, z^{2}\right]\right)=\left[p_{1}\left(z^{1}, z^{2}\right), \ldots, p_{n+1}\left(z^{1}, z^{2}\right)\right],
$$

where p_{1}, \ldots, p_{n+1} are polynomials of some fixed degree d whose only common zero is the origin.
(a) Show that every rational map is holomorphic.
(b) Let $i: \mathbb{C} \hookrightarrow \mathbb{C P}^{1}$ and $j: \mathbb{C}^{n} \hookrightarrow \mathbb{C P}^{n}$ be the usual embeddings. If $F: \mathbb{C P}^{1} \rightarrow \mathbb{C P}^{n}$ is a rational map whose image has nontrivial intersection with $j\left(\mathbb{C}^{n}\right)$, show that there is a finite set $S \subset \mathbb{C}$ such that $j^{-1} \circ F \circ i$ maps $\mathbb{C} \backslash S$ to \mathbb{C}^{n} and has the form

$$
j^{-1} \circ F \circ i(z)=\left(r_{1}(z), \ldots, r_{n}(z)\right)
$$

where r_{1}, \ldots, r_{n} are rational functions (i.e., quotients of polynomials).
(c) Show that every holomorphic map from $\mathbb{C P}^{1}$ to itself is rational. [Hint: show that it suffices to consider maps that fix the point at infinity.]
6. A smooth algebraic curve in $\mathbb{C P}^{n}$ is called rational if it is the image of a rational embedding $F: \mathbb{C P}^{1} \rightarrow \mathbb{C P}^{n}$. Show that every nondegenerate quadric curve in $\mathbb{C P}^{2}$ is rational. [Hint: Consider the affine curve $x y=1$.]
7. An automorphism of a complex manifold M is a biholomorphism $f: M \rightarrow M$.
(a) Show that every automorphism of \mathbb{C} is an affine function of the form $f(z)=a z+b$ for some $a, b \in \mathbb{C}$.
(b) Show that every automorphism of $\mathbb{C P}^{1}$ is a projective transformation.
8. For any two vectors $v, w \in \mathbb{C}$ that are linearly independent over \mathbb{R}, let $T_{v, w}=\mathbb{C} /\langle v, w\rangle$ denote the 1 -dimensional complex manifold obtained as a quotient of \mathbb{C} by the group of translations generated by v and w.
(a) For any such v, w, show that there exists $\tau \in \mathbb{C}$ with $\operatorname{Im} \tau>0$ such that $T_{v, w}$ is biholomorphic to $T_{1, \tau}$.
(b) Let $\operatorname{SL}(2, \mathbb{Z})$ denote the group of integer matrices with determinant $1 . \operatorname{If} \operatorname{Im} \tau>$ 0 and $\operatorname{Im} \tau^{\prime}>0$, show that $T_{1, \tau}$ is biholomorphic to $T_{1, \tau^{\prime}}$ if and only if there exists $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{SL}(2, \mathbb{Z})$ such that $\tau^{\prime}=(a \tau+b) /(c \tau+d)$. [Hint: show that any biholomorphism $T_{1, \tau} \rightarrow T_{1, \tau^{\prime}}$ lifts to an automorphism of \mathbb{C}.]

