Assignment \#2
Due 5/10/04

1. Let M be a smooth manifold and let J be an almost complex structure on M. Define $N: \mathscr{T}(M) \times \mathscr{T}(M) \rightarrow \mathscr{T}(M)$ by

$$
N(X, Y)=J[X, J Y]+J[J X, Y]+[X, Y]-[J X, J Y]
$$

(a) Show that N is bilinear over $C^{\infty}(M)$, and therefore defines a $\binom{2}{1}$-tensor field on M.
(b) Show that J is integrable if and only if $N \equiv 0$.
2. An almost complex structure on \mathbb{S}^{6} : Let \mathbb{O} denote the algebra of octonions (see [ITM, Problem 8-21]). For $P, Q \in \mathbb{O}$, define $P^{*}=\left(p^{*},-q\right)$ where $P=(p, q) \in \mathbb{O}=\mathbb{H} \times \mathbb{H}$. Let $\mathbb{R}=\left\{P \in \mathbb{O}: P^{*}=P\right\}$ denote the set of real octonions, identified with the real numbers in the natural way, and $\mathbb{E}=\left\{P \in \mathbb{O}: P^{*}=-P\right\}$ the set of imaginary octonions. We can define an inner product on \mathbb{O} by $\langle P, Q\rangle=\frac{1}{2}\left(P^{*} Q+Q^{*} P\right)$. Let $\mathbb{S}=\{P \in \mathbb{E}:|P|=1\}$ be the unit sphere in \mathbb{E}, and for each $P \in \mathbb{S}$, define a map $J_{P}: T_{P} \mathbb{S} \rightarrow \mathbb{O}$ by $J_{P}(Q)=Q P$, where we identify $T_{P} \mathbb{S}$ with the subspace $P^{\perp} \cap \mathbb{E} \subset \mathbb{O}$.
(a) Show that J_{P} maps $T_{P} \mathbb{S}$ to itself, and defines an almost complex structure on \mathbb{S}.
(b) Show that this almost complex structure is not integrable.
3. Let M be a complex manifold. A meromorphic function on M is a function $f: M \backslash V \rightarrow$ \mathbb{C}, where $V \subset M$ is an analytic hypersurface (not necessarily smooth), such that in a neighborhood U of each point f can be written $\left.f\right|_{U}=g / h$, where $g, h \in \mathscr{O}(U)$ with $h^{-1}(0)=V \cap U$. The set V is called the polar divisor of f, and the closure in M of the set $f^{-1}(0)$ is called the zero divisor of f. Suppose V, V^{\prime} are smooth analytic hypersurfaces in M. Show that the line bundles L_{V} and $L_{V^{\prime}}$ are isomorphic if and only if there exists a meromorphic function on M whose polar divisor is V and whose zero divisor is V^{\prime}.
4. Prove the Local $\partial \bar{\partial}$-Lemma: Suppose ω is a smooth, real, closed $(1,1)$-form on a complex manifold M. Then in a neighborhood of each point of M, there exists a real-valued smooth function u such that $\omega=i \partial \bar{\partial} u$.
5. Let $H \rightarrow \mathbb{C P}^{n}$ denote the hyperplane bundle. For $k \neq l \in \mathbb{Z}$, show that H^{k} is not isomorphic to H^{l}.
6. Let $K \rightarrow \mathbb{C P}^{n}$ denote the canonical bundle of $\mathbb{C P}^{n}$ (i.e., the bundle of ($n, 0$)-forms). Show that $K \cong H^{-(n+1)}$.
7. Show that $T^{\prime} \mathbb{C P}^{1} \cong H^{2}$.
8. Let M be a complex manifold. A holomorphic vector field on M is a holomorphic section of $T^{\prime} M$. Let Z be a smooth section of $T^{\prime} M$ and let θ_{t} denote the flow of $\operatorname{Re} Z$. Show that Z is holomorphic if and only if θ_{t} is a holomorphic map (where it's defined) for each t.
9. Let M be a complex manifold, and let \mathscr{C} and \mathscr{O} denote the sheaves of continuous and holomorphic functions on M, respectively. Show that \mathscr{O} is Hausdorff but \mathscr{C} is not.
10. Let M be a complex manifold, let \mathscr{O} be its sheaf of holomorphic functions, and let W be a connected component of \mathscr{O}. Show that W has a unique complex manifold structure such that $\left.\pi\right|_{W}$ is a local biholomorphism.

