Math 549

1. Let M be a smooth manifold and let J be an almost complex structure on M. Define $N: \mathscr{T}(M) \times \mathscr{T}(M) \to \mathscr{T}(M)$ by

$$N(X,Y) = J[X,JY] + J[JX,Y] + [X,Y] - [JX,JY].$$

- (a) Show that N is bilinear over $C^{\infty}(M)$, and therefore defines a $\binom{2}{1}$ -tensor field on M.
- (b) Show that J is integrable if and only if $N \equiv 0$.
- 2. An almost complex structure on \mathbb{S}^6 : Let \mathbb{O} denote the algebra of octonions (see [ITM, Problem 8-21]). For $P, Q \in \mathbb{O}$, define $P^* = (p^*, -q)$ where $P = (p, q) \in \mathbb{O} = \mathbb{H} \times \mathbb{H}$. Let $\mathbb{R} = \{P \in \mathbb{O} : P^* = P\}$ denote the set of real octonions, identified with the real numbers in the natural way, and $\mathbb{E} = \{P \in \mathbb{O} : P^* = -P\}$ the set of imaginary octonions. We can define an inner product on \mathbb{O} by $\langle P, Q \rangle = \frac{1}{2}(P^*Q + Q^*P)$. Let $\mathbb{S} = \{P \in \mathbb{E} : |P| = 1\}$ be the unit sphere in \mathbb{E} , and for each $P \in \mathbb{S}$, define a map $J_P: T_P \mathbb{S} \to \mathbb{O}$ by $J_P(Q) = QP$, where we identify $T_P \mathbb{S}$ with the subspace $P^{\perp} \cap \mathbb{E} \subset \mathbb{O}$.
 - (a) Show that J_P maps $T_P S$ to itself, and defines an almost complex structure on S.
 - (b) Show that this almost complex structure is not integrable.
- 3. Let M be a complex manifold. A meromorphic function on M is a function $f: M \setminus V \to \mathbb{C}$, where $V \subset M$ is an analytic hypersurface (not necessarily smooth), such that in a neighborhood U of each point f can be written $f|_U = g/h$, where $g, h \in \mathcal{O}(U)$ with $h^{-1}(0) = V \cap U$. The set V is called the *polar divisor* of f, and the closure in M of the set $f^{-1}(0)$ is called the *zero divisor* of f. Suppose V, V' are smooth analytic hypersurfaces in M. Show that the line bundles L_V and $L_{V'}$ are isomorphic if and only if there exists a meromorphic function on M whose polar divisor is V and whose zero divisor is V'.
- 4. Prove the Local $\partial \overline{\partial}$ -Lemma: Suppose ω is a smooth, real, closed (1,1)-form on a complex manifold M. Then in a neighborhood of each point of M, there exists a real-valued smooth function u such that $\omega = i\partial \overline{\partial} u$.
- 5. Let $H \to \mathbb{CP}^n$ denote the hyperplane bundle. For $k \neq l \in \mathbb{Z}$, show that H^k is not isomorphic to H^l .
- 6. Let $K \to \mathbb{CP}^n$ denote the canonical bundle of \mathbb{CP}^n (i.e., the bundle of (n, 0)-forms). Show that $K \cong H^{-(n+1)}$.
- 7. Show that $T'\mathbb{CP}^1 \cong H^2$.

- 8. Let M be a complex manifold. A holomorphic vector field on M is a holomorphic section of T'M. Let Z be a smooth section of T'M and let θ_t denote the flow of Re Z. Show that Z is holomorphic if and only if θ_t is a holomorphic map (where it's defined) for each t.
- 9. Let M be a complex manifold, and let \mathscr{C} and \mathscr{O} denote the sheaves of continuous and holomorphic functions on M, respectively. Show that \mathscr{O} is Hausdorff but \mathscr{C} is not.
- 10. Let M be a complex manifold, let \mathscr{O} be its sheaf of holomorphic functions, and let W be a connected component of \mathscr{O} . Show that W has a unique complex manifold structure such that $\pi|_W$ is a local biholomorphism.