- 1. If $\mathscr{S} \to M$ is a sheaf, $U \subset M$ is open, and $\sigma, \tau \in \mathscr{S}(U)$ are sections, show that the set $\{x \in U : \sigma(x) = \tau(x)\}$ is open. If U is connected and $\sigma = \tau$ somewhere, does this imply that $\sigma \equiv \tau$ on U?
- 2. Let M be a topological manifold and let \mathscr{S} , \mathscr{T} be sheaves over M. Show that every sheaf homomorphism $F: \mathscr{S} \to \mathscr{T}$ is a local homeomorphism.
- 3. Let M be a complex *n*-manifold, and for $0 \leq q \leq n$ let Ω^q denote the sheaf of holomorphic *q*-forms, i.e., $\overline{\partial}$ -closed (q, 0)-forms. (Thus sections of Ω^0 are just holomorphic functions.) For every holomorphic map $f: M \to N$, show that there is a group homomorphism $f^*: H^p(N; \Omega^q) \to H^p(M; \Omega^q)$, such that $\mathrm{Id}^* = \mathrm{Id}$ and $(f \circ g)^* = g^* \circ f^*$. Conclude that $H^p(M; \Omega^q)$ is a biholomorphism invariant. Give a counterexample to show that it need not be a diffeomorphism invariant.
- 4. Suppose $\pi: E \to M$ and $\pi': E' \to M'$ are smooth vector bundles and $F: E \to E'$ is a smooth bundle map covering $f: M \to M'$. (This means that f and F are smooth, and for each $x \in M$, F restricts to a linear isomorphism from E_x to $E'_{f(x)}$.) Show that $f^*c_l(E') = c_1(E)$.
- 5. Let M be a smooth manifold, and let $H^k(M; \underline{\mathbb{R}})$ denote sheaf cohomology with coefficients in the constant sheaf $\underline{\mathbb{R}}$. Let $\mathscr{U} = \{U_\alpha\}$ be an open covering of M such that each nonempty finite intersection $U_{\alpha_0} \cap \cdots \cap U_{\alpha_k}$ is contractible. By threading through the proof of the generalized de Rham theorem, show that the de Rham isomorphisms $\mathscr{I}_1: H^1_{d\mathbb{R}}(M) \to H^1(M; \underline{\mathbb{R}})$ and $\mathscr{I}_2: H^2_{d\mathbb{R}}(M) \to H^2(M; \underline{\mathbb{R}})$ can be described as follows.
 - (a) Let η be a closed 1-form on M. For each α , there is a smooth function u_{α} on U_{α} such that $\eta|_{U_{\alpha}} = du_{\alpha}$. Then $a(U_{\alpha}, U_{\beta}) = u_{\beta}|_{U_{\alpha} \cap U_{\beta}} u_{\alpha}|_{U_{\alpha} \cap U_{\beta}}$ defines a 1-cocycle on \mathscr{U} with coefficients in \mathbb{R} , and $\mathscr{I}_{1}[\eta] = [a]$.
 - (b) Let η be a closed 2-form on M. For each α , there is a smooth 1-form φ_{α} on U_{α} such that $\eta|_{U_{\alpha}} = d\varphi_{\alpha}$; and for each α and β such that $U_{\alpha} \cap U_{\beta} \neq \emptyset$, there is a smooth function $u_{\alpha\beta}$ on $U_{\alpha} \cap U_{\beta}$ such that $\varphi_{\beta}|_{U_{\alpha}\cap U_{\beta}} \varphi_{\alpha}|_{U_{\alpha}\cap U_{\beta}} = du_{\alpha\beta}$. Then $a(U_{\alpha}, U_{\beta}, U_{\gamma}) = (u_{\alpha\beta} + u_{\beta\gamma} + u_{\gamma\alpha})|_{U_{\alpha}\cap U_{\beta}\cap U_{\gamma}}$ defines a 2-cocycle on \mathscr{U} with coefficients in \mathbb{R} , and $\mathscr{I}_{2}[\eta] = [a]$.
- 6. Let M be a complex manifold. A smooth, real-valued function u on M is said to be *pluriharmonic* if in any holomorphic coordinates, u is harmonic (in the usual Euclidean sense) as a function of each complex coordinate when the others are held fixed. Show that the following are equivalent.
 - (a) u is pluriharmonic.
 - (b) $\partial \overline{\partial} u = 0.$

- (c) For every holomorphic embedding $j: D \hookrightarrow M$ of the unit disk D into M, j^*u is harmonic (in the usual Euclidean sense) on D.
- (d) In a neighborhood of each point, u is the real part of a holomorphic function.
- 7. Let M be a complex manifold, and let \mathscr{P} denote the sheaf of (germs of) pluriharmonic functions on M. For each $q \geq 1$, let \mathscr{F}^q denote the sheaf of real (q+1)-forms whose (q+1,0) and (0,q+1)-parts are zero; in other words, \mathscr{F}^q is the sheaf of real-valued forms in $\mathscr{E}^{(q,1)} \oplus \cdots \oplus \mathscr{E}^{(1,q)}$. Show that the following sheaf sequence is exact:

$$0 \to \mathscr{P} \hookrightarrow \mathscr{E}^0 \xrightarrow{i\partial\overline{\partial}} \mathscr{F}^1 \xrightarrow{d} \mathscr{F}^2 \xrightarrow{d} \dots \xrightarrow{d} \mathscr{F}^q \xrightarrow{d} \dots$$

Conclude that for $q \geq 2$, $H^q(M; \mathscr{P})$ is isomorphic to the kernel of $d: \mathscr{F}^q(M) \to \mathscr{F}^{q+1}(M)$ modulo the image of $d: \mathscr{F}^{q-1}(M) \to \mathscr{F}^q(M)$. State the analogous result for q = 1. [Hint: For the proof of exactness at \mathscr{F}^q , if β is a local section of \mathscr{F}^q and $\beta = d\alpha$, write $\alpha = \alpha^{(q,0)} + \tilde{\alpha} + \alpha^{(0,q)}$ with $\tilde{\alpha}$ a section of \mathscr{F}^{q-1} , and show that locally $d\alpha^{(q,0)} = d\overline{\partial}\sigma$ for some (q-1,0) form σ .]

- 8. Let M be a complex manifold, and let E be a holomorphic vector bundle over M.
 - (a) Show that the operator $\overline{\partial} \colon \Gamma(E) \to \Gamma(\Lambda^{0,1}M \otimes E)$ defined in class satisfies the following two properties.
 - i. $\overline{\partial}(f\sigma) = (\overline{\partial}f) \otimes \sigma + f\overline{\partial}\sigma.$
 - ii. $\overline{Z}(\overline{W}\sigma) \overline{W}(\overline{Z}\sigma) = [\overline{Z}, \overline{W}]\sigma$, where $\overline{Z}\sigma$ is shorthand for the section of E obtained by inserting \overline{Z} into the $\Lambda^{0,1}$ slot of $\overline{\partial}\sigma$.
 - (b) Show that $\overline{\partial}$ extends to an operator $\overline{\partial} \colon \Gamma(\Lambda^{p,q} \otimes E) \to \Gamma(\Lambda^{p,q+1}M \otimes E)$ satisfying

$$\overline{\partial}(\alpha \otimes \sigma) = \overline{\partial}\alpha \otimes \sigma + (-1)^{p+q}\alpha \wedge \overline{\partial}\sigma,$$

where α is a smooth (p, q)-form, σ is a smooth section of E, and the wedge product is between the differential form components of α and $\overline{\partial}\sigma$.

- (c) Show that $\overline{\partial} \circ \overline{\partial} = 0$.
- 9. Let $E \to M$ be a smooth complex vector bundle, and let ∇ be any connection on E. For any $x \in M$, show that there exists a smooth local frame (e_j) for E in a neighborhood of x such that $\nabla e_j = 0$ at x.
- 10. **Optional:** (This exercise is aimed primarily at those who know something about simplicial complexes and simplicial cohomology; see, for example, Chapters 5 and 13 of [ITM] and Chapter 5 of Munkres's Elements of Algebraic Topology.) Let K be an abstract simplicial complex, and let |K| denote the underlying topological space of K. Let \mathscr{U} be the open cover of |K| defined by $\mathscr{U} = \{ \text{St } v : v \in K^{(0)} \}$, where $K^{(0)}$ is the set of vertices of K and St v is the open star of v [ITM, Problem 5-2]. If G is an abelian group, for each nonnegative integer k, define a simplicial k-cochain in K with coefficients in G to be a function c from the set of ordered k-simplices in K to G such that c changes sign whenever two vertices are interchanged:

$$c(v_0,\ldots,v_i,\ldots,v_j,\ldots,v_k) = -c(v_0,\ldots,v_j,\ldots,v_i,\ldots,v_k).$$

Let $C^k_{\Delta}(K;G)$ denote the set of all such k-cochains, which is an abelian group under the obvious operation of addition of cochains. Define coboundary operators $\delta_k \colon C^k_{\Delta}(K;G) \to C^{k+1}_{\Delta}(K;G)$ by

$$(\delta_k c)(v_0, \dots, v_{k+1}) = \sum_{j=0}^{k+1} (-1)^j c(v_0, \dots, \widehat{v}_j, \dots, v_{k+1}),$$

and let $H^k_{\Delta}(K;G) = \operatorname{Ker} \delta_k / \operatorname{Im} \delta_{k-1}$ denote the resulting cohomology groups. Let $C^k(\mathscr{U};\underline{G})$ denote the group of k-cochains on \mathscr{U} with coefficients in the constant sheaf \underline{G} , and define a group homomorphism $\Phi \colon C^k(\mathscr{U};\underline{G}) \to C^k_{\Delta}(K;G)$ by

$$\Phi(c)(v_0,\ldots,v_k)=c(\operatorname{St} v_0,\ldots,\operatorname{St} v_k).$$

Show that Φ descends to an isomorphism $H^k(|K|;\underline{G}) \to H^k_{\Delta}(K;G)$. You may use without proof either or both of the following theorems:

Subdivision Theorem: If \mathscr{U} is any open cover of |K|, there is a subdivision \tilde{K} of K such that the covering $\{\operatorname{St} v : v \in \tilde{K}^{(0)}\}$ refines \mathscr{U} , and a simplicial map $F \colon \tilde{K} \to K$ (called a *simplicial approximation to the identity*) such that the induced map $F^* \colon H^k_{\Delta}(K;G) \to H^k_{\Delta}(\tilde{K};G)$ is an isomorphism. (See Munkres, *Elements of Algebraic Topology*, for a proof.)

Leray's Theorem: Suppose $\mathscr{S} \to M$ is a sheaf over a paracompact space M, and \mathscr{U} is an open cover of M with the property that the restriction of \mathscr{S} to $U_0 \cap \cdots \cap U_k$ is acyclic for all finite collections $\{U_0, \ldots, U_k\} \subset \mathscr{U}$ with nonempty intersection. Then the natural map $H^k(\mathscr{U}; \mathscr{S}) \to H^k(M; \mathscr{S})$ is an isomorphism. (See [G] for a proof.)