
Math 549 Complex Manifolds Spring 2004
Assignment #4 (CORRECTED AGAIN, 6/4/04)

Due 6/7/04

1. Let E → M be a smooth complex vector bundle, and let E be the complex vector
bundle whose fiber Ex at each point x ∈ M is equal to Ex, but with complex multipli-
cation defined by (a, v) 7→ av. Show that E is isomorphic to E∗ but not necessarily to
E.

2. Let M be a complex manifold, and let π : E → M be a smooth complex vector bundle.
A Cauchy-Riemann operator on E is a C-linear map ∂ : Γ(E) → Γ(Λ0,1M⊗E) satisfying

(i) ∂(fσ) = (∂f) ⊗ σ + f∂σ for all smooth complex-valued functions f .

(ii) Z(Wσ) −W (Zσ) = [Z,W ]σ for all Z,W ∈ T ′′M .

(In part (ii), we define Zσ as in Problem 8 on Assignment 3. It follows from that
problem that every holomorphic vector bundle admits a Cauchy-Riemann operator.)
If E is endowed with a Cauchy-Riemann operator, show that E has a unique structure
as a holomorphic vector bundle such that the holomorphic sections of E are exactly
those in the kernel of ∂. [Hint: If (ek) is a smooth local frame for E over U ⊂ M , show
that the (0, 1)-forms θj

k on U defined by ∂ek = θj
k ⊗ ej satisfy ∂θj

k + θj
l ∧ θl

k = 0. Let
(zj) be local holomorphic coordinates for U and let (zj, bk) be the (complex-valued)
coordinates on π−1(U) ⊂ E defined by the local frame (ek), via the correspondence
(zj, bk) ↔ bkek|z. Show that there is a unique integrable complex structure on the total
space of E such that Λ1,0E is locally spanned by (π∗dzj , dbj + bkπ∗θj

k), and apply the
Newlander-Nirenberg theorem.]

3. Let Σ be a Riemann surface and let g be a Kähler metric on Σ. If z is any local
holomorphic coordinate on Σ, show that the holomorphic sectional curvature of g is
equal to its Gaussian curvature, and both are equal to

−1

u

∂2

∂z∂z
log u,

where u = gC(∂/∂z, ∂/∂z). Use this formula to compute the Gaussian curvatures of
the 1-dimensional Fubini-Study and complex hyperbolic metrics.

4. Let Q ⊂ CP2 be the quadric curve defined by the homogeneous polynomial z1z2−(z3)2.
Compute the Gaussian curvature and the area of Q in the metric obtained by restricting
the Fubini-Study metric to Q.

5. Let E → M be a smooth complex vector bundle of rank k. Show that cR
1 (E) =

cR
1 (ΛkE), where ΛkE denotes the bundle of antisymmetric contravariant k-tensors on

E and cR
1 denotes the real first Chern class.



6. ***PROBLEM DELETED***

7. Let π : E → M and π′ : E′ → M ′ be smooth complex vector bundles of rank k, and
let F : E → E′ be a smooth bundle map covering f : M → M ′. (Recall that this
means π′ ◦ F = f ◦ π, and for each x ∈ M , the map Fx = F |Ex : Ex → E′

x is a linear
isomorphism.)

(a) If (e′j) is a smooth frame for E′ over an open set U ′ ⊂ M ′, show that there is a
unique smooth frame (ej) for E over f−1(U ′) such that F ◦ ej = e′j ◦ f for each j.

(b) If ∇′ is a connection on E′, show that there is a unique connection ∇ on E, called
the pullback connection, with the property that

∇Xej = F−1
x ∇′

f∗X(e′j)

whenever the frames (ej) and (e′j) are related as in part (a).

(c) For each j = 1, . . . , k, show that cR
j (E) = f∗cR

j (E′).

8. (a) Show that U(n + 1) acts transitively on CPn by projective transformations.

(b) Show that the Fubini-Study metric is U(n+1)-invariant, and is, up to a constant
multiple, the unique U(n + 1)-invariant metric on CPn.

9. (a) Let U(n, 1) be the subgroup of GL(n + 1, C) leaving invariant the following her-
mitian bilinear form:

H = dz1 ⊗ dz1 + · · · + dzn ⊗ dzn − dzn+1 ⊗ dzn+1.

Considering the unit ball B2n ⊂ Cn ⊂ CPn as a subset of projective space, show
that U(n, 1) acts transitively on B2n by projective transformations.

(b) Let g be the complex hyperbolic metric on B2n, defined by the Kähler form ω =
i
2
∂∂ log(|z|2 − 1). Show that g is, up to a constant multiple, the unique U(n, 1)-

invariant metric on B2n.

(c) Show that g has constant holomorphic sectional curvature equal to −4.

10. Let M be a complex manifold of dimension n, and let g be a Kähler metric on M with
constant holomorphic sectional curvature C.

(a) Let X,Y ∈ TxM be a pair of orthonormal vectors. Show that the (ordinary)
sectional curvature of g in the direction of the plane spanned by (X,Y ) is given
by

K(X,Y ) = 1
4
C

(
1 + 3 〈X,JY 〉2

)
.

(b) If n ≥ 2, show that at each point of M , the (ordinary) sectional curvatures of g
take on all values between 1

4
C and C, inclusive.


