Math 549

Complex Manifolds Assignment #4 (CORRECTED AGAIN, 6/4/04) Due 6/7/04

- 1. Let $E \to M$ be a smooth complex vector bundle, and let \overline{E} be the complex vector bundle whose fiber \overline{E}_x at each point $x \in M$ is equal to E_x , but with complex multiplication defined by $(a, v) \mapsto \overline{a}v$. Show that \overline{E} is isomorphic to E^* but not necessarily to E.
- 2. Let M be a complex manifold, and let $\pi \colon E \to M$ be a smooth complex vector bundle. A Cauchy-Riemann operator on E is a \mathbb{C} -linear map $\overline{\partial} \colon \Gamma(E) \to \Gamma(\Lambda^{0,1}M \otimes E)$ satisfying
 - (i) $\overline{\partial}(f\sigma) = (\overline{\partial}f) \otimes \sigma + f\overline{\partial}\sigma$ for all smooth complex-valued functions f.

(ii)
$$\overline{Z}(\overline{W}\sigma) - \overline{W}(\overline{Z}\sigma) = [\overline{Z}, \overline{W}]\sigma$$
 for all $\overline{Z}, \overline{W} \in T''M$.

(In part (ii), we define $\overline{Z}\sigma$ as in Problem 8 on Assignment 3. It follows from that problem that every holomorphic vector bundle admits a Cauchy-Riemann operator.) If E is endowed with a Cauchy-Riemann operator, show that E has a unique structure as a holomorphic vector bundle such that the holomorphic sections of E are exactly those in the kernel of $\overline{\partial}$. [Hint: If (e_k) is a smooth local frame for E over $U \subset M$, show that the (0, 1)-forms θ_k^j on U defined by $\overline{\partial}e_k = \theta_k^j \otimes e_j$ satisfy $\overline{\partial}\theta_k^j + \theta_l^j \wedge \theta_k^l = 0$. Let (z^j) be local holomorphic coordinates for U and let (z^j, b^k) be the (complex-valued) coordinates on $\pi^{-1}(U) \subset E$ defined by the local frame (e_k) , via the correspondence $(z^j, b^k) \leftrightarrow b^k e_k|_z$. Show that there is a unique integrable complex structure on the total space of E such that $\Lambda^{1,0}E$ is locally spanned by $(\pi^*dz^j, db^j + b^k\pi^*\theta_k^j)$, and apply the Newlander-Nirenberg theorem.]

3. Let Σ be a Riemann surface and let g be a Kähler metric on Σ . If z is any local holomorphic coordinate on Σ , show that the holomorphic sectional curvature of g is equal to its Gaussian curvature, and both are equal to

$$-\frac{1}{u}\frac{\partial^2}{\partial z\partial \overline{z}}\log u,$$

where $u = g_{\mathbb{C}}(\partial/\partial z, \partial/\partial \overline{z})$. Use this formula to compute the Gaussian curvatures of the 1-dimensional Fubini-Study and complex hyperbolic metrics.

- 4. Let $Q \subset \mathbb{CP}^2$ be the quadric curve defined by the homogeneous polynomial $z^1 z^2 (z^3)^2$. Compute the Gaussian curvature and the area of Q in the metric obtained by restricting the Fubini-Study metric to Q.
- 5. Let $E \to M$ be a smooth complex vector bundle of rank k. Show that $c_1^{\mathbb{R}}(E) = c_1^{\mathbb{R}}(\Lambda_k E)$, where $\Lambda_k E$ denotes the bundle of antisymmetric contravariant k-tensors on E and $c_1^{\mathbb{R}}$ denotes the real first Chern class.

Spring 2004

6. ***PROBLEM DELETED***

- 7. Let $\pi: E \to M$ and $\pi': E' \to M'$ be smooth complex vector bundles of rank k, and let $F: E \to E'$ be a smooth bundle map covering $f: M \to M'$. (Recall that this means $\pi' \circ F = f \circ \pi$, and for each $x \in M$, the map $F_x = F|_{E_x}: E_x \to E'_x$ is a linear isomorphism.)
 - (a) If (e'_j) is a smooth frame for E' over an open set $U' \subset M'$, show that there is a unique smooth frame (e_j) for E over $f^{-1}(U')$ such that $F \circ e_j = e'_j \circ f$ for each j.
 - (b) If ∇' is a connection on E', show that there is a unique connection ∇ on E, called the *pullback connection*, with the property that

$$\nabla_X e_j = F_x^{-1} \nabla'_{f_*X}(e'_j)$$

whenever the frames (e_j) and (e'_j) are related as in part (a).

- (c) For each j = 1, ..., k, show that $c_j^{\mathbb{R}}(E) = f^* c_j^{\mathbb{R}}(E')$.
- 8. (a) Show that U(n+1) acts transitively on \mathbb{CP}^n by projective transformations.
 - (b) Show that the Fubini-Study metric is U(n+1)-invariant, and is, up to a constant multiple, the unique U(n+1)-invariant metric on \mathbb{CP}^n .
- 9. (a) Let U(n, 1) be the subgroup of $GL(n + 1, \mathbb{C})$ leaving invariant the following hermitian bilinear form:

$$H = dz^1 \otimes d\overline{z^1} + \dots + dz^n \otimes d\overline{z^n} - dz^{n+1} \otimes d\overline{z^{n+1}}.$$

Considering the unit ball $\mathbb{B}^{2n} \subset \mathbb{C}^n \subset \mathbb{CP}^n$ as a subset of projective space, show that U(n, 1) acts transitively on \mathbb{B}^{2n} by projective transformations.

- (b) Let g be the complex hyperbolic metric on \mathbb{B}^{2n} , defined by the Kähler form $\omega = \frac{i}{2}\partial\overline{\partial}\log(|z|^2 1)$. Show that g is, up to a constant multiple, the unique U(n, 1)-invariant metric on \mathbb{B}^{2n} .
- (c) Show that g has constant holomorphic sectional curvature equal to -4.
- 10. Let M be a complex manifold of dimension n, and let g be a Kähler metric on M with constant holomorphic sectional curvature C.
 - (a) Let $X, Y \in T_x M$ be a pair of orthonormal vectors. Show that the (ordinary) sectional curvature of g in the direction of the plane spanned by (X, Y) is given by

$$K(X,Y) = \frac{1}{4}C\left(1+3\left\langle X,JY\right\rangle^2\right)$$

(b) If $n \ge 2$, show that at each point of M, the (ordinary) sectional curvatures of g take on all values between $\frac{1}{4}C$ and C, inclusive.