1. A map $F: \mathbb{C P}^{1} \rightarrow \mathbb{C P}^{n}$ is called rational if it is of the form

$$
F\left(\left[Z^{0}, Z^{1}\right]\right)=\left[p_{0}\left(Z^{0}, Z^{1}\right), \ldots, p_{n}\left(Z^{0}, Z^{1}\right)\right]
$$

where p_{0}, \ldots, p_{n} are polynomials of some fixed degree d whose only common zero is the origin.
(a) Show that every rational map is holomorphic.
(b) Let $i: \mathbb{C} \hookrightarrow \mathbb{C P}^{1}$ and $j: \mathbb{C}^{n} \hookrightarrow \mathbb{C P}^{n}$ be the usual embeddings. If $F: \mathbb{C P}^{1} \rightarrow \mathbb{C P}^{n}$ is a rational map whose image has nontrivial intersection with $j\left(\mathbb{C}^{n}\right)$, show that there is a finite set $S \subseteq \mathbb{C}$ such that $j^{-1} \circ F \circ i$ maps $\mathbb{C} \backslash S$ to \mathbb{C}^{n} and has the form

$$
j^{-1} \circ F \circ i(z)=\left(r_{1}(z), \ldots, r_{n}(z)\right)
$$

where r_{1}, \ldots, r_{n} are rational functions (i.e., quotients of polynomials). [Remark: This explains the reason for the word "rational."]
(c) Show that every holomorphic map from $\mathbb{C P}^{1}$ to itself is rational. [Hint: Show that it suffices to consider maps that fix the point at infinity.]
2. A smooth algebraic curve in $\mathbb{C P}^{n}$ is called rational if it is the image of a rational embedding $F: \mathbb{C P}^{1} \rightarrow \mathbb{C P}^{n}$. Show that every nondegenerate quadric curve in $\mathbb{C P}^{2}$ is rational. [Hint: Consider the affine curve $x y=1$.]
3. An automorphism of a complex manifold M is a biholomorphism $f: M \rightarrow M$.
(a) Show that every automorphism of \mathbb{C} is an affine function of the form $f(z)=a z+b$ for some $a, b \in \mathbb{C}$.
(b) Show that every automorphism of $\mathbb{C P}^{1}$ is a projective transformation. [Remark: We'll prove later that this is true for $\mathbb{C P}^{n}$ as well, but the proof requires more machinery.]
4. For any two vectors $v, w \in \mathbb{C}$ that are linearly independent over \mathbb{R}, let $T_{v, w}=\mathbb{C} /\langle v, w\rangle$ denote the 1-dimensional complex torus obtained as a quotient of \mathbb{C} by the group of translations generated by v and w.
(a) For any such v, w, show that there exists $\tau \in \mathbb{C}$ with $\operatorname{Im} \tau>0$ such that $T_{v, w}$ is biholomorphic to $T_{1, \tau}$.
(b) Let $\operatorname{SL}(2, \mathbb{Z})$ denote the group of integer matrices with determinant $1 . \operatorname{If} \operatorname{Im} \tau>$ 0 and $\operatorname{Im} \tau^{\prime}>0$, show that $T_{1, \tau}$ is biholomorphic to $T_{1, \tau^{\prime}}$ if and only if there exists $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{SL}(2, \mathbb{Z})$ such that $\tau^{\prime}=(a \tau+b) /(c \tau+d)$. [Hint: Show that any biholomorphism $T_{1, \tau} \rightarrow T_{1, \tau^{\prime}}$ lifts to an automorphism of \mathbb{C}.]
5. Let (M, g) and (N, h) be Riemannian manifolds. A smooth map $F: M \rightarrow N$ is said to be conformal if $F^{*} h=\lambda g$ for some smooth, positive function λ on M.
(a) Let (M, g) and (N, h) be oriented Riemannian 2-manifolds, and give M and N the complex structures determined by their metrics and orientations. Suppose $F: M \rightarrow N$ is a local diffeomorphism. Show that F is holomorphic if and only if it is conformal and orientation-preserving.
(b) Give examples of diffeomorphisms $F, G: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}$ such that F is holomorphic but not conformal, and G is conformal and orientation-preserving but not holomorphic.
6. Let M be a smooth manifold and let J be an almost complex structure on M. Define a $\operatorname{map} N: \mathfrak{X}(M) \times \mathfrak{X}(M) \rightarrow \mathfrak{X}(M)$ by

$$
N(X, Y)=[J X, J Y]-[X, Y]-J[X, J Y]-J[J X, Y]
$$

(a) Show that N is bilinear over $C^{\infty}(M)$, and therefore defines a (1,2)-tensor field on M, called the Nijenhuis tensor of \boldsymbol{J}.
(b) Show that J is integrable if and only if $N \equiv 0$. [Hint: Take X and Y to be smooth sections of $T^{\prime} M$ or $T^{\prime \prime} M$.]
7. An almost complex structure on \mathbb{S}^{6} : Let \mathbb{O} denote the algebra of octonions (see Problem 8-7 in Introduction to Smooth Manifolds). For $P, Q \in \mathbb{O}$, define $P^{*}=\left(p^{*},-q\right)$ where $P=(p, q) \in \mathbb{O}=\mathbb{H} \times \mathbb{H}$. Let $\mathbb{R}=\left\{P \in \mathbb{O}: P^{*}=P\right\}$ denote the set of real octonions, identified with the real numbers in the natural way, and $\mathbb{E}=\{P \in \mathbb{O}$: $\left.P^{*}=-P\right\}$ the set of imaginary octonions. We can define an inner product on \mathbb{O} by $\langle P, Q\rangle=\frac{1}{2}\left(P^{*} Q+Q^{*} P\right) \in \mathbb{R}$. Let $\mathbb{S}=\{P \in \mathbb{E}:|P|=1\}$ be the unit sphere in \mathbb{E}, and for each $P \in \mathbb{S}$, define a map $J_{P}: T_{P} \mathbb{S} \rightarrow \mathbb{O}$ by $J_{P}(Q)=Q P$, where we identify $T_{P} \mathbb{S}$ with the subspace $P^{\perp} \cap \mathbb{E} \subseteq \mathbb{O}$.
(a) Show that J_{P} maps $T_{P} \mathbb{S}$ to itself, and defines an almost complex structure on \mathbb{S}.
(b) Show that this almost complex structure is not integrable.
[Remark: It is still unknown whether \mathbb{S}^{6} admits an integrable almost complex structure. Many well-known and respected mathematicians have written papers purporting to answer this question one way or the other, but all the proofs have been found to be wrong or incomplete.]

