- 1. Let (M, J) be an almost complex manifold, and define $\Lambda^{p,q}M$ just as we did for complex manifolds. Show that the following are equivalent:
 - (a) J is integrable.
 - (b) For each pair of nonnegative integers p, q, the exterior derivative d maps smooth sections of $\Lambda^{p,q}M$ to sections of $\Lambda^{p+1,q}M \oplus \Lambda^{p,q+1}M$.
 - (c) d maps sections of $\Lambda^{0,1}M$ to sections of $\Lambda^{1,1}M \oplus \Lambda^{0,2}M$.
- 2. The LOCAL $\partial \partial$ -LEMMA: Suppose ω is a smooth, real, closed (1, 1)-form on a complex manifold M. (To say that ω is **real** just means that $\overline{\omega} = \omega$.) Prove that in a neighborhood of each point of M, there exists a real-valued smooth function u such that $\omega = i\partial \overline{\partial} u$.
- 3. Let $H \to \mathbb{CP}^n$ denote the hyperplane bundle. For $k \neq l \in \mathbb{Z}$, show that H^k is not isomorphic to H^l .
- 4. Let $K \to \mathbb{CP}^n$ denote the bundle of (n, 0)-forms (called the *canonical bundle* of \mathbb{CP}^n). Show that $K \cong H^{-(n+1)}$.
- 5. Show that $T'\mathbb{CP}^1 \cong H^2$.
- 6. Let M be a complex manifold. A holomorphic vector field on M is a holomorphic section of T'M. Let Z be a smooth section of T'M and let θ_t denote the flow of Re Z. Show that Z is holomorphic if and only if θ_t is a holomorphic map (where it's defined) for each t.