Math 549

- 1. If $\mathscr{S} \to M$ is a sheaf (viewed as a stalk space), $U \subseteq M$ is open, and $\sigma, \tau \in \mathscr{S}(U)$ are sections, show that the set $\{x \in U : \sigma(x) = \tau(x)\}$ is open. If U is connected and $\sigma(p) = \tau(p)$ for some $p \in M$, does this imply that $\sigma \equiv \tau$ on U?
- 2. Let M be a topological manifold and let \mathscr{S}, \mathscr{T} be sheaves over M (viewed as stalk spaces). Show that every sheaf homomorphism $F: \mathscr{S} \to \mathscr{T}$ is a local homeomorphism.
- 3. Let M be a smooth manifold, and let $H^p(M; \mathbb{R})$ denote sheaf cohomology with coefficients in the constant sheaf $\mathbb{R} \to M$. Let $\mathscr{U} = \{U_\alpha\}_{\alpha \in A}$ be an indexed open covering of M such that each nonempty finite intersection $U_{\alpha_0} \cap \cdots \cap U_{\alpha_p}$ is contractible. By threading through the proof of the generalized de Rham theorem, show that the de Rham isomorphisms $\mathscr{I}_1 \colon H^1_{\mathrm{dR}}(M) \to H^1(M; \mathbb{R})$ and $\mathscr{I}_2 \colon H^2_{\mathrm{dR}}(M) \to H^2(M; \mathbb{R})$ can be described as follows.
 - (a) Let η be a closed 1-form on M. For each α , there is a smooth function u_{α} on U_{α} such that $\eta|_{U_{\alpha}} = du_{\alpha}$. Then $a_{\alpha\beta} = u_{\beta}|_{U_{\alpha}\cap U_{\beta}} u_{\alpha}|_{U_{\alpha}\cap U_{\beta}}$ defines a 1-cocycle on \mathscr{U} with coefficients in \mathbb{R} , and $\mathscr{I}_{1}[\eta] = [a]$.
 - (b) Let η be a closed 2-form on M. For each α , there is a smooth 1-form φ_{α} on U_{α} such that $\eta|_{U_{\alpha}} = d\varphi_{\alpha}$; and for each α and β such that $U_{\alpha} \cap U_{\beta} \neq \emptyset$, there is a smooth function $u_{\alpha\beta}$ on $U_{\alpha} \cap U_{\beta}$ such that $\varphi_{\beta}|_{U_{\alpha}\cap U_{\beta}} \varphi_{\alpha}|_{U_{\alpha}\cap U_{\beta}} = du_{\alpha\beta}$. Then $a_{\alpha\beta\gamma} = (u_{\alpha\beta} + u_{\beta\gamma} + u_{\gamma\alpha})|_{U_{\alpha}\cap U_{\beta}\cap U_{\gamma}}$ defines a 2-cocycle on \mathscr{U} with coefficients in \mathbb{R} , and $\mathscr{I}_{2}[\eta] = [a]$.
- 4. Let M be a complex manifold. A smooth, real-valued function u on M is said to be *pluriharmonic* if in any holomorphic coordinates, u is harmonic (in the usual one-complex-variable sense) as a function of each complex coordinate when the others are held fixed. Show that the following are equivalent.
 - (a) u is pluriharmonic.
 - (b) $\partial \overline{\partial} u = 0.$
 - (c) For every holomorphic embedding $j: D \hookrightarrow M$ of the unit disk D into M, j^*u is harmonic (in the usual sense) on D.
 - (d) In a neighborhood of each point, u is the real part of a holomorphic function.
- 5. Let M be a complex manifold, and let \mathscr{P} denote the sheaf of (germs of) pluriharmonic functions on M. For each $q \ge 1$, let \mathscr{F}^q denote the sheaf of real (q+1)-forms whose (q+1,0) and (0,q+1)-parts are zero; in other words, \mathscr{F}^q is the sheaf of real-valued forms in $\mathscr{E}^{q,1} \oplus \cdots \oplus \mathscr{E}^{1,q}$. Show that the following sheaf sequence is exact:

$$0 \to \mathscr{P} \hookrightarrow \mathscr{E}^0 \xrightarrow{i\partial\overline{\partial}} \mathscr{F}^1 \xrightarrow{d} \mathscr{F}^2 \xrightarrow{d} \dots \xrightarrow{d} \mathscr{F}^q \xrightarrow{d} \dots$$

Conclude that for $q \geq 2$, $H^q(M; \mathscr{P})$ is isomorphic to the kernel of $d: \mathscr{F}^q(M) \to \mathscr{F}^{q+1}(M)$ modulo the image of $d: \mathscr{F}^{q-1}(M) \to \mathscr{F}^q(M)$. State the analogous result for q = 1. [Hint: For the proof of exactness at \mathscr{F}^q , if β is a local section of \mathscr{F}^q and $\beta = d\alpha$, write $\alpha = \alpha^{(q,0)} + \tilde{\alpha} + \alpha^{(0,q)}$ with $\tilde{\alpha}$ a section of \mathscr{F}^{q-1} , and show that locally $d\alpha^{(q,0)} = d\overline{\partial}\sigma$ for some (q-1,0) form σ .]

- 6. Let M be a complex manifold, and let E be a holomorphic vector bundle over M.
 - (a) Show that the operator $\overline{\partial} \colon \Gamma(E) \to \Gamma(\Lambda^{0,1}M \otimes E)$ defined in class satisfies the following two properties.
 - i. $\overline{\partial}(f\sigma) = (\overline{\partial}f) \otimes \sigma + f\overline{\partial}\sigma$.
 - ii. $\overline{Z}(\overline{W}\sigma) \overline{W}(\overline{Z}\sigma) = [\overline{Z}, \overline{W}]\sigma$, where $\overline{Z}\sigma$ is shorthand for the section of E obtained by inserting \overline{Z} into the $\Lambda^{0,1}$ slot of $\overline{\partial}\sigma$.
 - (b) Show that $\overline{\partial}$ extends to an operator $\overline{\partial} \colon \Gamma(\Lambda^{p,q}M \otimes E) \to \Gamma(\Lambda^{p,q+1}M \otimes E)$ satisfying

$$\overline{\partial}(\alpha \otimes \sigma) = \overline{\partial}\alpha \otimes \sigma + (-1)^{p+q}\alpha \wedge \overline{\partial}\sigma,$$

where α is a smooth (p, q)-form, σ is a smooth section of E, and the wedge product is between the differential form components of α and $\overline{\partial}\sigma$.

- (c) Show that $\overline{\partial} \circ \overline{\partial} = 0$.
- 7. (OPTIONAL) Let M be a complex manifold, and let $\pi: E \to M$ be a smooth complex vector bundle. A **Cauchy-Riemann operator on E** is a \mathbb{C} -linear map $\overline{\partial}: \Gamma(E) \to \Gamma(\Lambda^{0,1}M \otimes E)$ satisfying
 - (a) $\overline{\partial}(f\sigma) = (\overline{\partial}f) \otimes \sigma + f\overline{\partial}\sigma$ for all smooth complex-valued functions f.
 - (b) $\overline{Z}(\overline{W}\sigma) \overline{W}(\overline{Z}\sigma) = [\overline{Z}, \overline{W}]\sigma$ for all $\overline{Z}, \overline{W} \in T''M$.

(In part (ii), we define $\overline{Z}\sigma$ as in Problem 6. It follows from that problem that every holomorphic vector bundle admits a Cauchy-Riemann operator.) If E is endowed with a Cauchy-Riemann operator, show that E has a unique structure as a holomorphic vector bundle such that the holomorphic sections of E are exactly those in the kernel of $\overline{\partial}$. [Hint: If (s_k) is a smooth local frame for E over $U \subseteq M$, show that the (0, 1)-forms θ_k^j on U defined by $\overline{\partial}s_k = \theta_k^j \otimes s_j$ satisfy $\overline{\partial}\theta_k^j + \theta_l^j \wedge \theta_k^l = 0$. Let (z^j) be local holomorphic coordinates for U and let (z^j, b^k) be the (complex-valued) coordinates on $\pi^{-1}(U) \subseteq E$ defined by the local frame (s_k) , via the correspondence $(z^j, b^k) \leftrightarrow b^k s_k|_z$. Show that there is a unique integrable complex structure on the total space of E such that $\Lambda^{1,0}E$ is locally spanned by $(\pi^* dz^j, db^j + b^k \pi^* \theta_k^j)$, and apply the Newlander-Nirenberg theorem.]