
Ricci

A Mathematica package

for doing tensor calculations

in differential geometry

User’s Manual

Version 1.32

By John M. Lee
assisted by

Dale Lear, John Roth, Jay Coskey, and Lee Nave

2

Ricci
A Mathematica package for doing tensor calculations

in differential geometry

User’s Manual

Version 1.32

By John M. Lee
assisted by Dale Lear, John Roth, Jay Coskey, and Lee Nave

Copyright c©1992–1998 John M. Lee
All rights reserved

Development of this software was supported in part
by NSF grants DMS-9101832, DMS-9404107

Mathematica is a registered trademark of Wolfram Research, Inc.

This software package and its accompanying documentation are provided as is, without
guarantee of support or maintenance. The copyright holder makes no express or
implied warranty of any kind with respect to this software, including implied warranties
of merchantability or fitness for a particular purpose, and is not liable for any damages
resulting in any way from its use.

Everyone is granted permission to copy, modify and redistribute this software package
and its accompanying documentation, provided that:

1. All copies contain this notice in the main program file and in the supporting
documentation.

2. All modified copies carry a prominent notice stating who made the last modifi-
cation and the date of such modification.

3. No charge is made for this software or works derived from it, with the exception
of a distribution fee to cover the cost of materials and/or transmission.

John M. Lee
Department of Mathematics
Box 354350
University of Washington
Seattle, WA 98195-4350

E-mail: lee@math.washington.edu
Web: http://www.math.washington.edu/~lee/

CONTENTS 3

Contents

1 Introduction 6

1.1 Overview . 6

1.2 Obtaining and using Ricci . 7

1.3 A brief look at Ricci . 7

2 Ricci Basics 10

2.1 Bundles . 10

2.2 Indices . 12

2.3 Constants . 12

2.4 Tensors . 13

2.5 Mathematical functions . 16

2.6 Basic tensor expressions . 17

2.7 Saving your work . 18

3 Products, Contractions, and Symmetrizations 19

3.1 TensorProduct . 19

3.2 Wedge . 19

3.3 SymmetricProduct . 20

3.4 Dot . 20

3.5 Inner . 21

3.6 HodgeInner . 21

3.7 Int . 22

3.8 Alt . 22

3.9 Sym . 22

4 Derivatives 23

4.1 Del . 23

4.2 CovD . 24

4.3 Div . 25

4.4 Grad . 25

4.5 Laplacian . 25

4.6 Extd . 26

4.7 ExtdStar . 26

CONTENTS 4

4.8 LaplaceBeltrami . 26

4.9 Lie . 26

5 Simplifying and Transforming Expressions 28

5.1 TensorSimplify . 28

5.2 SuperSimplify . 29

5.3 TensorExpand . 29

5.4 AbsorbMetrics . 29

5.5 RenameDummy . 29

5.6 OrderDummy . 30

5.7 CollectConstants . 30

5.8 FactorConstants . 30

5.9 SimplifyConstants . 30

5.10 BasisExpand . 30

5.11 BasisGather . 31

5.12 CovDExpand . 31

5.13 ProductExpand . 32

5.14 PowerSimplify . 32

5.15 CorrectAllVariances . 33

5.16 NewDummy . 33

5.17 CommuteCovD . 34

5.18 OrderCovD . 34

5.19 CovDSimplify . 34

5.20 LowerAllIndices . 34

5.21 TensorCancel . 34

6 Defining Relations Between Tensors 36

6.1 DefineRelation . 36

6.2 DefineRule . 38

7 Special Features 40

7.1 One-dimensional bundles . 40

7.2 Riemannian metrics . 40

7.3 Matrices and 2-tensors . 41

7.4 Product tensors . 42

CONTENTS 5

7.5 Connections, torsion, and curvature 44

7.6 Non-default connections and metrics 46

8 Reference List 49

8.1 Ricci commands and functions 49

8.2 Global variables . 87

1 INTRODUCTION 6

1 Introduction

1.1 Overview

Ricci is a Mathematica package for doing symbolic tensor computations that
arise in differential geometry. It supports:

• Tensor expressions with and without indices

• The Einstein summation convention

• Correct manipulation of dummy indices

• Mathematical notation with upper and lower indices

• Automatic calculation of covariant derivatives

• Automatic application of tensor symmetries

• Riemannian metrics and curvatures

• Differential forms

• Any number of vector bundles with user-defined characteristics

• Names of indices indicate which bundles they refer to

• Complex bundles and tensors

• Conjugation indicated by barred indices

• Connections with and without torsion

Ricci is named after Gregorio Ricci-Curbastro (1853-1925), who invented the
tensor calculus (what M. Spivak calls “the debauch of indices”).

This manual describes the capabilities and functions provided by Ricci. To
use Ricci and this manual, you should be familiar with Mathematica, and with
the basic objects of differential geometry (manifolds, vector bundles, tensors,
connections, and covariant derivatives). Chapter 8 contains a complete reference
list of all the Ricci commands, functions, and global variables. Most of the
important Ricci commands are described in some detail in the main text, but
there are a few things that are explained only in Chapter 8.

I would like to express my gratitude to my collaborators on this project: Dale
Lear, who wrote the first version of the software and contributed uncountably
many expert design suggestions; John Roth, and Lee Nave, who reworked some
of the most difficult sections of code; Jay Coskey and PmWeizenbaum, who con-
tributed invaluable editorial assistance with this manual; the National Science
Foundation and the University of Washington, who provided generous financial
support for the programming effort; and all those mathematicians who tried out
early versions of this software and contributed suggestions for improvement.

1 INTRODUCTION 7

1.2 Obtaining and using Ricci

Ricci requires Mathematica version 2.0 or greater. It will also run with Math-
ematica 3.0, although it will not produce formatted StandardForm output.
Therefore, when you use Ricci in a Mathematica 3.0 notebook, you should
change the default output format to OutputForm. When you first load Ricci,
you’ll get a message showing how to do this by choosing Default Output Format
Type from the Cell menu.

The Ricci source file takes approximately 287K bytes of disk storage, including
about 49K bytes of on-line documentation. I have tested the package on a DEC
Alpha system and a Pentium 100, where it runs reasonably fast and seems to
require about 6 or 7 megabytes of memory. I don’t have any idea how it will run
on other systems, but I expect that Ricci will be very slow on some platforms.

The source files for Ricci are available to the public free of charge, either via
the World-Wide Web from http://www.math.washington.edu/~lee/Ricci/

or by anonymous ftp from ftp.math.washington.edu, in directory pub/Ricci.

You’ll need to download the Ricci source file Ricci.m and put it in a directory
that is accessible to Mathematica. (You may need to change the value of Mathe-
matica’s $Path variable in your initialization file to make sure that Mathematica
can find the Ricci files—see the documentation for the version of Mathematica
that you’re using.) Once you’ve successfully transferred all the Ricci files to
your own system, start up Mathematica and load the Ricci package by typing
<<Ricci.m. Once you’ve loaded Ricci into Mathematica, you can type ?name

for information about any Ricci function or command.

If you have questions about using Ricci, suggestions for improvement, or a
problem that you think may be caused by a bug in the program, please contact
the author <lee@math.washington.edu>.

1.3 A brief look at Ricci

To give you a quick idea what typical Ricci input and output look like, here
are a couple of examples. Suppose alpha and beta are 1-tensors. Ricci can
manipulate tensor products and wedge products:

In[4]:= TensorProduct[alpha,beta]

Out[4]= alpha (X) beta

In[5]:= Wedge[alpha,beta]

Out[5]= alpha ^ beta

and exterior derivatives:

1 INTRODUCTION 8

In[6]:= Extd[%]

Out[6]= d[alpha] ^ beta - d[beta] ^ alpha

To express tensor components with indices, you just type the indices in brackets
immediately after the tensor name. Lower and upper indices are typed as L[i]
and U[i], respectively; in output form they appear as subscripts and super-
scripts. Indices that result from covariant differentiation are typed in a second
set of brackets. For example, if alpha is a 1-tensor, you indicate the components
of alpha and its first covariant derivative as follows:

In[7]:= alpha [L[i]]

Out[7]= alpha

i

In[8]:= alpha [L[i]] [L[j]]

Out[8]= alpha

i; j

Ricci always uses the Einstein summation convention: any index that appears
as both a lower index and an upper index in the same term is considered to
be implicitly summed over, and the metric is used to raise and lower indices.
For example, if the metric is named g, the components of the inner product of
alpha and beta can be expressed in either of the following ways:

In[9]:= alpha[L[k]] beta[U[k]]

k

Out[9]= alpha beta

k

In[10]:= g[U[i],U[j]] alpha[L[i]] beta[L[j]]

i j

Out[10]= alpha beta g

i j

Ricci’s simplification commands can recognize the equality of two terms, even
when their dummy indices have different names. For example:

1 INTRODUCTION 9

In[11]:= %9 + %10

i j k

Out[11]= alpha beta g + alpha beta

i j k

In[12]:= TensorSimplify[%]

i

Out[12]= 2 alpha beta

i

You can take a covariant derivative of this last expression just by putting another
index in brackets after it:

In[13]:= % [L[j]]

i i

Out[13]= 2 (alpha beta + alpha beta)

i ;j i ;j

The remainder of this manual will introduce you more thoroughly to the capa-
bilities of Ricci.

2 RICCI BASICS 10

2 Ricci Basics

There are four kinds of objects used by Ricci: bundles, indices, constants, math-
ematical functions, and tensors. This chapter describes these objects, and then
describes how to construct simple tensor expressions. The last section in the
chapter describes how to save your work under Ricci.

2.1 Bundles

In Ricci, the tensors you manipulate are considered to be sections of one or
more vector bundles. Before defining tensors, you must define each bundle you
will use by calling the DefineBundle command. When you define a bundle, you
must specify the bundle’s name, its dimension, the name of its metric, and the
index names you will use to refer to the bundle. You may also specify (either
explicitly or by default) whether the bundle is real or complex, the name of the
tangent bundle of its underlying manifold, and various properties of the bundle’s
default metric, connection, and frame.

The simplest case is when there is only one bundle, the tangent bundle of the
underlying manifold. For example, the command

In[2]:= DefineBundle[tangent, n, g, {i,j,k}]

defines a real vector bundle called tangent, whose dimension is n, and whose
metric is to be called g. The index names i, j, and k refer to this bundle. If
any expression requires more than three tangent indices, Ricci generates index
names of the form k1, k2, k3, etc. If the bundle is one-dimensional, there can
only be one index name.

Every bundle must have a metric, which is a nondegenerate inner product on
the fibers. By default, Ricci assumes the metric is positive-definite, but you can
override this assumption by adding the option PositiveDefinite -> False to
your DefineBundle call. The metric name you specify in your DefineBundle
call is automatically defined by Ricci as a symmetric, covariant 2-tensor associ-
ated with this bundle.

By default, Ricci assumes all bundles to be real. You may define a complex
bundle by including the option Type -> Complex in your DefineBundle call.
For example, suppose you also need a complex two-dimensional bundle called
fiber. You can define it as follows:

In[3]:= DefineBundle[fiber, 2, h, {a,b,c}, Type -> Complex]

This specifies that fiber’s metric is to be called h, and that the index names
a, b, and c refer to fiber.

The fifth argument in the example above, Type -> Complex, is a typical exam-
ple of a Ricci option. Like options for built-in Mathematica functions, options

2 RICCI BASICS 11

for Ricci functions are typed after the required arguments, and are always of
the form optionname -> value. This option specifies that fiber is to be a
complex bundle.

Any time you define a complex bundle, you also get its conjugate bundle. In
this case the conjugate bundle is referred to as Conjugate[fiber]; the barred
versions of the indices a, b, and c will refer to this conjugate bundle.

Mathematically, the conjugate bundle is defined abstractly as follows. If V
is a complex n-dimensional vector bundle, let J :V → V denote the complex
structure map of V—the real-linear endomorphism obtained by multiplying by
i =

√−1. If CV denotes the complexification of V, i.e., the tensor product (over
R) of V with the complex numbers, then J extends naturally to a complex-
linear endomorphism of CV . CV decomposes into a direct sum CV = V ′⊕V ′′,
where V ′, V ′′ are the i and (−i)-eigenspaces of J , respectively. V ′ is naturally
isomorphic to V itself. By convention, the conjugate bundle is defined by V =
V ′′.

The metric on a complex bundle is automatically defined as a 2-tensor with
Hermitian symmetries. In Ricci, this is implemented as follows. A Hermitian
tensor h on a complex bundle is a real, symmetric, complex-bilinear 2-tensor on
the direct sum of the bundle with its conjugate, with the additional property
that hab = hāb̄ = 0. Thus the only nonzero components of h are those of the
form

hab̄ = hb̄a = hbā.

(It is done this way because Ricci’s index conventions require that all tensors be
considered to be complex-multilinear.) To obtain the usual sesquilinear form on
a complex bundle V , you apply the metric to a pair of vectors x, y, where x, y ∈
V . In Ricci’s input form, this inner product would be denoted by Inner[x,

Conjugate[y]].

For every bundle you define, you must specify, either explicitly or by default,
the name of the tangent bundle of the underlying manifold. Ricci needs this
information, for example, when generating indices for covariant derivatives. By
default, the first bundle you define (or the direct sum of this bundle and its
conjugate if the bundle is complex) is assumed to be the underlying tangent
bundle for all subsequent bundles. If you want to override this behavior, you
can either give a value to the global variable $DefaultTangentBundle before
defining bundles, or explicitly include the TangentBundle option in each call to
DefineBundle. See the Reference List, Chapter 8, for more details.

Another common type of bundle is a tangent bundle with a Riemannian met-
ric. The DefineBundle option MetricType -> Riemannian specifies that the
bundle is a Riemannian tangent bundle. Riemannian metrics are described in
Section 7.2.

There are other options you can specify in the DefineBundle call, such
as FlatConnection, TorsionFree, OrthonormalFrame, CommutingFrame,
PositiveDefinite, and ParallelFrame. If you decide to change any of these

2 RICCI BASICS 12

options after the bundle has already been defined, you can call Declare. See
the Reference List, Chapter 8, for a complete description of DefineBundle and
Declare.

2.2 Indices

The components of tensors are represented by upper and lower indices. Ricci
adheres to the Einstein index conventions, as follows. For any vector bundle
V , sections of V itself are considered as contravariant 1-tensors, while sections
of the dual bundle V ∗ are considered as covariant 1-tensors. The components
of contravariant tensors have upper indices, while the components of covariant
tensors have lower indices. Higher-rank tensors may have both upper and lower
indices. Indices are distinguished both by their horizontal positions and by their
vertical positions; the altitude of each index indicates whether that index is co-
variant or contravariant. Any index that appears twice in the same term must
appear once as an upper index and once as a lower index, and the term is under-
stood to be summed over that index. (Indices associated with one-dimensional
bundles are an exception to this rule; see Section 7.1 on one-dimensional bundles
below.)

In input form and in Ricci’s internal representation, indices have the form
L[name] for a lower index and U[name] for an upper index. Barred indices
(for complex bundles only) are typed in input form as LB[name] and UB[name];
they are represented internally by L[name[Bar]] and U[name[Bar]]. In output
form, upper and lower indices are represented by superscripts and subscripts,
with or without bars. This special formatting can be turned off by setting
$TensorFormatting=False.

Every index name must be associated with a bundle. This association is estab-
lished either by listing the index name in the call to DefineBundle, as in the
examples above, or by calling DefineIndex. You can create new names without
calling DefineIndex just by appending digits to an already-defined index name.
For example, if index j is associated with bundle x, then so are j1, j25, etc.

2.3 Constants

In the Ricci package, a constant is any expression that is constant with respect
to covariant differentiation in all directions. You can define a symbol to be a
constant by calling DefineConstant:

In[10]:= DefineConstant[c]

This defines c to be a real constant (the default), and ensures that covariant
derivatives of c, such as c[L[i]], are interpreted as 0. To define a complex
constant, use

2 RICCI BASICS 13

In[11]:= DefineConstant[d, Type -> Complex]

If a constant is real, you may specify that it has other attributes by giving
a Type option consisting of one or more keywords in a list, such as Type ->

{Positive,Real}. The complete list of allowable Type keywords for constants is
Complex, Real, Imaginary, Positive, Negative, NonPositive, NonNegative,
Integer, Odd, and Even. The Type option controls how the constant behaves
with respect to conjugation, exponentiation, and logarithms.

After a constant has been defined, you can change its Type option by calling
Declare, as in the following example:

In[12]:= Declare[d, Type -> {NonNegative,Real}]

In the Ricci package, any expression that does not contain explicit tensors is
assumed to be a constant for the purposes of covariant differentiation, so in
some cases it is not necessary to call DefineConstant. However, if you attempt
to insert indices into a symbol c that has not been defined as either a constant
or a tensor, you will get output that looks like c[L[i],L[j]], indicating that
Ricci does not know how to interpret c. For this reason, as well as to tell Ricci
what type of constant c is, it is always a good idea to define your constants
explicitly.

Note that constants are not given Mathematica’s Constant attribute, for the
following reason. Some future version of Ricci may allow tensors depending on
parameters such as t; in this case, t will be considered a constant from the point
of view of covariant differentiation, but may well be non-constant in expressions
such as D[f[t],t]. You can test whether a tensor expression is constant or not
by applying the Ricci function ConstantQ.

2.4 Tensors

The most important objects that Ricci uses in calculations are tensors. Ricci
can handle tensors of any rank, and associated with any vector bundle or direct
sum or tensor product of vector bundles. Scalar functions are represented by
0-tensors; other objects such as vector fields, differential forms, metrics, and
curvatures are represented by higher-rank tensors.

Tensors are created by the DefineTensor command. For example, to create a
1-tensor named alpha you could type:

In[6]:= DefineTensor[alpha, 1]

This creates a real tensor of rank one, which is associated with the current
default tangent bundle, usually the first bundle you defined. All tensors are
assumed by default to be covariant; thus the tensor alpha defined above can be
thought of as a covector field or 1-form. To define a contravariant 1-tensor (i.e.,
a vector field), you could type:

2 RICCI BASICS 14

In[7]:= DefineTensor[v, 1, Variance -> Contravariant]

To create a scalar function, you simply define a tensor of rank 0:

In[8]:= DefineTensor[u, 0, Type -> {NonNegative, Real}]

The Type option of DefineTensor controls how the tensor behaves with respect
to conjugation, exponentiation, and logarithms. For a rank-0 tensor, its value
can be either a single keyword or a list of keywords as in the example above.
The complete list of allowable Type keywords for 0-tensors is Complex, Real,
Imaginary, Positive, Negative, NonPositive, and NonNegative. For higher-
rank tensors, the Type option can be Real, Imaginary, or Complex. The default
is always Real. If you include one of the keywords indicating positivity or
negativity, you may leave out Real, which is assumed.

For higher-rank tensors, you can specify tensor symmetries using the
Symmetries option. For example, to define a symmetric covariant 2-tensor
named h, type:

In[9]:= DefineTensor[h, 2, Symmetries -> Symmetric]

Other common values for the Symmetries option are Alternating (or, equiva-
lently, Skew) and NoSymmetries (the default).

To associate a tensor with a bundle other than the default tangent bundle, use
the Bundle option:

In[10]:= DefineTensor[omega, 2, Bundle -> fiber,

Type -> Complex,

Variance -> {Contravariant,Covariant}]

This specifies that omega is a complex 2-tensor on the bundle named fiber,
which is contravariant in the first index and covariant in the second. If the
value of the Variance option is a list, as in the example above, the length of
the list must be equal to the rank of the tensor, and each entry specifies the
variance of the corresponding index position. The Bundle option may also be
typed as a list of bundle names: this means that the tensor is associated with
the direct sum of all the bundles in the list. Any time you insert an index into
a tensor that does not belong to one of the bundles with which the tensor is
associated, you get 0.

After a tensor has been defined, you can change certain of its options, such as
Type and Bundle, by calling Declare. For example, to change the 0-tensor u
defined above to be a complex-valued function, you could type:

In[11]:= Declare[u, Type -> Complex]

2 RICCI BASICS 15

Internally, Ricci represents tensors in the form

Tensor[name, {i,j,...}, {k,l,...}]

where i, j,... are the tensor indices, and k, l,... are indices resulting from
covariant differentiation. In input form, you represent an unindexed tensor just
by typing its name. Indices are inserted by typing them in brackets after the
tensor name, while differentiated indices go inside a second set of brackets.

A tensor of rank k should be thought of as having k “index slots”. Each index
slot is associated with a bundle or list of bundles (specified in the DefineTensor
command); if an inserted index is not associated with one of the bundles for
that slot, the result is 0. Once all index slots are full, indices resulting from
covariant differentiation can be typed in a second set of brackets. For 0-tensors,
all indices are assumed to result from differentiation. For example, suppose eta
is a 2-tensor and u is a 0-tensor (i.e., a scalar function). Table 1 shows the input,
internal, and output forms for various tensor expressions involving eta and u.

input internal output

eta Tensor[eta,{},{}] eta

eta [L[i],U[j]] Tensor[eta,{L[i],U[j]},{}]

j

eta

i

eta [L[i],U[j]] [L[k]] Tensor[eta,{L[i],U[j]},{L[k]}]

j

eta

i ;k

u Tensor[u,{},{}] u

u [L[a],L[b]] Tensor[u,{},{L[a],L[b]}] u

;a b

Table 1: Input, internal, and output forms for tensors

The conjugate of a complex tensor without indices is represented in input form
by Conjugate[name]; you can type indices in brackets following this expression
just as for ordinary tensors, as in Conjugate[name] [L[i],L[j]]. In internal
form, a conjugate tensor looks just as in Table 1, except that the name is
replaced by the special form name[Bar]. In output form, the conjugate of a
tensor is represented by a bar over the name.

Indices in any slot can be upper or lower. A metric with lower indices represents
the components of the metric on the bundle itself, and a metric with upper in-
dices represents the components of the inverse matrix, which can be interpreted

2 RICCI BASICS 16

invariantly as the components of the metric on the dual bundle. For any other
tensor, if an index is inserted that is not at the “natural altitude” for that slot
(based on the Variance option when the tensor was defined), it is assumed to
have been raised or lowered by means of the metric. For example, if a is a
covariant 1-tensor, then the components of a ordinarily have lower indices. A
component with an upper index is interpreted as follows:

i i j

a = g a

j

As explained above, components of tensors ordinarily have lower indices in co-
variant slots, and upper indices in contravariant slots. Ricci always assumes
there is a default local basis (or “moving frame”) for each bundle you define,
and components of tensors are understood to be computed with respect to this
basis. The default contravariant basis vectors (i.e., basis vectors for the bundle
itself) are referred to as Basis[L[i]], and the default covariant basis vectors
(representing the dual basis for the dual bundle) as Basis[U[i]]. (You may
specify different names to be used in input and output forms by using the
BasisName and CoBasisName options of DefineBundle.)

Note that the index conventions for basis vectors are opposite those for com-
ponents: this is so that the expansion of tensors in terms of basis vectors will
be consistent with the summation convention. The Ricci function BasisExpand

can be used to expand any tensor expression in terms of the default basis. For
example:

In[13]:= BasisExpand[alpha]

k3

Out[13]= alpha Basis

k3

2.5 Mathematical functions

If u is a scalar function (0-tensor), you may form other scalar functions by
applying real- or complex-valued mathematical functions such as Log or Sin to
u. This is indicated in Ricci’s input form and output form simply by typing
Log[u] or Sin[u]. You may also define your own mathematical functions and
use them in tensor expressions. In order for Ricci to correctly interpret an
expression such as f[u], it must be told that f is a mathematical function, and
what its characteristics are. You do this by calling DefineMathFunction. For
example, to define f as a complex-valued function of one variable, you could
type:

2 RICCI BASICS 17

In[14]:= DefineMathFunction[f, Type->Complex]

The Type option determines how the function behaves with respect to conju-
gation, exponentiation, and logarithms. The default is Real, which means that
the function is always assumed to take real values. Other common options
are Type -> {Positive,Real}, Type -> {NonNegative,Real}, and Type ->

Automatic, which means that Conjugate[f[x]] = f[Conjugate[x]].

Ricci automatically calls DefineMathFunction for the Mathematica func-
tions Log, Sin, Cos, Tan, Sec, Csc, and Cot. If you wish to use any
other built-in mathematical functions in tensor expressions, you must call
DefineMathFunction yourself.

2.6 Basic tensor expressions

Tensor expressions are built up from tensors and constants, using the arithmetic
operations Plus, Times, and Power, the Mathematica operators Conjugate,
Re, and Im, scalar mathematical functions, and the Ricci product, contraction,
symmetrization, and differentiation operators described below.

Tensor expressions can be generally divided into three classes: pure tensor ex-
pressions, without any indices, in which tensor names are combined using arith-
metic operations and tensor operators such as TensorProduct and Extd; com-
ponent expressions, in which all index slots are filled, derivatives are indicated
by components of covariant derivatives, and tensor components are combined
using only arithmetic operations; and mixed tensor expressions, in which some
but not all index slots are filled, and which usually arise when expressions of
the preceding two types are combined. Component expressions are considered
to have rank 0 when they are acted upon by Ricci’s tensor operators. In most
cases, Ricci handles all three kinds of expressions in a uniform way, but there
are some operations, such as computing components of covariant derivatives,
that require component expressions.

You may insert indices into any pure or mixed tensor expression, thereby con-
verting it to a component expression, by typing the indices in brackets after
the expression, as in x[L[i],U[j]], which is a shorthand input form for the
explicit Ricci function InsertIndices[x, {L[i],L[j]}]. For most tensor
expressions, the number of indices inserted must be equal to the rank of the
tensor expression. (The only exception is product tensors, described in Section
3 below.) For example, if alpha and beta are 1-tensors, their tensor product,
indicated by TensorProduct[alpha,beta], is a 2-tensor, so you can insert two
indices:

2 RICCI BASICS 18

In[12]:= TensorProduct[alpha,beta] [L[i],L[j]]

Out[12]= alpha beta

i j

If x is a scalar (rank 0) expression, it can be converted to a component expres-
sion by inserting zero indices, as in InsertIndices[x,{}] or x[], or by typing
BasisExpand[x]. For example, Inner[alpha,beta] represents the inner prod-
uct of alpha and beta:

In[13]:= Inner[alpha,beta]//BasisExpand

k1

Out[13]= alpha beta

k1

If you type indices in brackets after a component expression (one in which
all index slots are already filled), you get components of covariant derivatives.
Thus:

In[14]:= %13 [L[j]]

k1 k1

Out[14]= alpha beta + alpha beta

;j k1 k1 ;j

If you type indices in brackets after a scalar (rank-0) expression that is not a
component expression (i.e., has unfilled index slots), it is first converted to a
component expression before covariant derivatives are taken.

The Ricci functions that can be used to construct tensor expressions are de-
scribed in later chapters.

2.7 Saving your work

Ricci provides a function called RicciSave for saving all the definitions you
have made during your current Mathematica session. The command

RicciSave["filename"]

writes your definitions in the file called filename in Mathematica input form.
RicciSave also writes the current definitions of Ricci’s predefined tensors Basis,
Curv, Tor, Conn, and Kronecker (in case you have defined any relations involv-
ing them), and of its global variables (those whose names start with $). Any

2 RICCI BASICS 19

previous contents of filename are erased. You can read the definitions back in
by typing <<filename.

3 PRODUCTS, CONTRACTIONS, AND SYMMETRIZATIONS 20

3 Products, Contractions, and Symmetrizations

This chapter describes the most important Ricci functions for specifying vari-
ous kinds of products, contractions, and symmetrizations of tensor expressions.
Although Ricci performs some automatic simplification on most of these func-
tions, such as expanding linear combinations of arguments, for the most part
these functions are simply maintained unevaluated until you insert indices.

3.1 TensorProduct

The basic product operation for tensors is TensorProduct. In input form, this
can be abbreviated TProd.

In[15]:= TProd[alpha, beta]

Out[15]= alpha (X) beta

As you can see here, Ricci’s output form for tensor products uses an approxi-
mation of the tensor product symbol “⊗”. Ricci automatically expands tensor
products of sums and scalar multiples.

3.2 Wedge

Wedge products (exterior products) of differential forms are indicated by the
Ricci operator Wedge. In output form, wedge products are indicated by a caret:

In[16]:= Wedge[alpha, beta]

Out[16]= alpha ^ beta

The arguments to Wedge must be alternating tensors. Ricci automatically ex-
pands wedge products of sums and scalar multiples, and arranges the factors in
lexical order, inserting signs as appropriate.

There are two common conventions for relating wedge products to tensor prod-
ucts. Ricci supports both conventions; which one is in use at any given time
is controlled by the global variable $WedgeConvention. You should pick one
convention and set $WedgeConvention at the beginning of your calculation; if
you change it, you may get inconsistent results.

In Ricci, the two wedge product conventions are referred to as Det and Alt.
Under the Alt convention (the default), the wedge product is defined by

α ∧ β = Alt(α⊗ β),

where Alt is the projection onto the alternating part of the tensor. This conven-
tion is used, for example, in the differential geometry texts by Bishop/Goldberg,

3 PRODUCTS, CONTRACTIONS, AND SYMMETRIZATIONS 21

Kobayashi/Nomizu, and Helgason. Under this convention, on an n-dimensional
bundle, the wedge product of all n basis elements is 1/n! times the determinant
function. Thus, if e1, . . . , en are basis covectors,

e1 ∧ . . . ∧ en =
1

n!
det .

The other wedge product convention, called Det, is defined by

α ∧ β =
(p+ q)!

p!q!
Alt(α⊗ β).

where α is a p-form and β a q-form. This convention is used, for example, in
the texts by Spivak, Boothby, and Warner. The name Det comes from the fact
that, under this convention, if ωi are 1-forms and Xj are vectors,

ω1 ∧ . . . ∧ ωk(X1, . . . , Xk) = det(ωi(Xj)).

In particular,
e1 ∧ . . . ∧ en = det .

3.3 SymmetricProduct

In Ricci, symmetric products are represented by ordinary multiplication. Thus,
if a and b are 1-tensors, then a b represents their symmetric product a ∗ b, a
2-tensor. Similarly, a^2 represents a ∗ a.
In input form, you can type a symmetric product just as you would an ordi-
nary product. If you prefer, for clarity, you may indicate symmetric products
explicitly using the SymmetricProduct function:

In[17]:= SymmetricProduct[alpha,beta]

Out[17]= alpha * beta

In output form, Ricci inserts explicit asterisks in products of tensors of rank
greater than 0, to remind you that multiplication is being interpreted as a
symmetric product.

The symmetric product is defined by

a ∗ b = Sym(a⊗ b),

where Sym is the projection onto the symmetric part of a tensor.

3.4 Dot

Dot is a Mathematica function that is given an additional interpretation by
Ricci. If a and b are tensor expressions, then Dot[a,b] or a.b is the tensor

3 PRODUCTS, CONTRACTIONS, AND SYMMETRIZATIONS 22

formed by contracting the last index of a with the first index of b. It is easiest
to see what this means by inserting indices. For example, suppose a is a 2-tensor
and e is a 3-tensor:

In[18]:= (a.e) [L[i],L[j],L[k]]

k4

Out[18]= a e

i k4 j k

Dot can be applied to three or more tensor expressions, as long as all of the
tensors except possibly the first and last have rank two or more. Ricci expands
dot products of sums and scalar multiples automatically. Dot products of 1-
tensors are automatically converted to inner products.

3.5 Inner

The Mathematica function Inner is given an additional interpretation by Ricci.
If a and b are tensor expressions of the same rank, Inner[a,b] is their inner
product, taken with respect to the default metric(s) on the bundle(s) with which
a and b are associated. In output form, Inner[a,b] appears as <a, b>. For
example:

In[19]:= Inner[a,b]

Out[19]= <a, b>

In[20]:= % // BasisExpand

k5 k6

Out[20]= a b

k5 k6

3.6 HodgeInner

HodgeInner is the inner product ordinarily used for differential forms. This
differs from the usual inner product by a constant factor, determined by the
global variable $WedgeConvention. It is defined in such a way that, if ei are
orthonormal 1-forms, then the k-forms

ei1 ∧ . . . ∧ eik , i1 < . . . < ik

are orthonormal. In output form, HodgeInner[alpha,beta] appears as
<<a, b>>.

3 PRODUCTS, CONTRACTIONS, AND SYMMETRIZATIONS 23

3.7 Int

If v is a vector field and alpha is a differential form, Int[v,alpha] represents
interior multiplication of v into alpha (usually denoted ivα or v α), with a nor-
malization factor depending on $WedgeConvention, chosen so that Int[v,]

is an antiderivation.

More generally, if alpha and beta are any alternating tensor expressions
with Rank[alpha] ≤ Rank[beta], then Int[alpha,beta] represents the gen-
eralized interior product of alpha into beta (sometimes denoted α ∨ β).
Int[alpha,] is defined as the adjoint (with respect to the Hodge inner
product) of wedging with alpha on the left: if alpha, beta, and gamma are
alternating tensors of ranks a, b, and a+ b, respectively, then

<<alpha ^ beta, gamma>> = <<beta, Int [gamma]>>.

alpha

3.8 Alt

If x is any tensor expression, Alt[x] is the alternating part of x. If x is already
alternating, then Alt[x] = x. Note that Alt expects its argument to be a pure
or mixed tensor expression. This means that you must apply Alt before you
insert indices. If Alt is applied to a component expression, it does nothing,
because a component expression is considered to have rank 0.

3.9 Sym

If x is any tensor expression, Sym[x] is the symmetric part of x. If x is already
symmetric, then Sym[x] = x. Note that Sym expects its argument to be a pure
or mixed tensor expression. This means that you must apply Sym before you
insert indices. If Sym is applied to a component expression, it does nothing,
because a component expression is considered to have rank 0.

4 DERIVATIVES 24

4 Derivatives

This chapter describes the differentiation operators provided by Ricci. The op-
erators Del, Div, Grad, Extd, ExtdStar, and Lie below are Ricci “primitives”;
after some simplification, they are maintained unevaluated until you insert in-
dices. The rest of the operators described here are immediately transformed
into expressions involving the primitive operators.

4.1 Del

The basic differentiation operator in Ricci is Del. If x is a tensor expression,
Del[x] represents the total covariant derivative of x. (Del stands for the math-
ematical symbol “∇”.) If x is a tensor of rank k, Del[x] is a tensor of rank
k + 1. If x is a section of bundle b, Del[x] is a section of the tensor product of
b with its underlying (co)tangent bundle. The extra index slot resulting from
differentiation is always the last one, and is always covariant.

When you insert indices into Del[x], you get components of the covariant
derivative of x. For example, suppose a is a 2-tensor:

In[21]:= Del[a]

Out[21]= Del[a]

In[22]:= % [L[i],L[j],L[k]]

Out[22]= a

i j ;k

The operator Del can also be used to take the covariant derivative of a tensor
with respect to a specific vector. If v is a 1-tensor expression, Del[v,x] repre-
sents the covariant derivative of x in the direction v; this is the contraction of v
with the last index of Del[x]:

In[23]:= Del[v,a]

Out[23]= Del [a]

v

In[24]:= % [L[i],L[j]]

k5

Out[24]= a v

i j ;k5

4 DERIVATIVES 25

Here v can be a contravariant or covariant 1-tensor; if it is covariant, it is
converted to a vector field by means of the metric. If u is a scalar function (i.e.,
a 0-tensor), then Del[v,u] is just the ordinary directional derivative of u in the
direction v.

If v is a contravariant basis vector such as Basis[L[i]], Ricci uses a special
shorthand output form for Del[v,a]:

In[25]:= Del[Basis[L[i]], a]

Out[25]= Del [a]

i

WARNING: Some authors use a notation such as∇iajk to refer to the (j, k, i)-
component of the total covariant derivative ∇a. This is not consistent with
Ricci’s convention; to Ricci, the expression

Del [a]

i j k

is the directional derivative of the component ajk in the i-direction. It is not the
component of a tensor; it differs from the component ajk;i by terms involving
the connection coefficients.

4.2 CovD

If x is a component expression, the L[i] component of the covariant deriva-
tive of x is represented in input form either by CovD[x,{L[i]}] or by the
abbreviated form x[L[i]]. Multiple covariant derivatives are indicated by
CovD[x,{L[i],L[j],...}] or x[L[i],L[j],...]. If x is a scalar expression
with some unfilled index slots, Ricci automatically inserts indices to convert it to
a component expression before taking covariant derivatives. Ricci automatically
expands covariant derivatives of sums, products, and powers. For example:

4 DERIVATIVES 26

In[26]:= (1 + a[L[i]] b[U[i]]) ^ 2

i 2

Out[26]= (1 + a b)

i

In[27]:= % [L[j]]

i i k6

Out[27]= 2 (a b + a b) (1 + a b)

i ;j i ;j k6

4.3 Div

Div[x] represents the divergence of the tensor expression x. This is just the
covariant derivative of x contracted on its last two indices. If x is a k-tensor,
Div[x] is a (k − 1)-tensor. Ricci assumes that the last index of x is associated
with the underlying tangent bundle of x’s bundle.

For example, suppose a is a 2-tensor:

In[28]:= Div[a] [L[i]]

k8

Out[28]= a

i k8 ;

Div is the formal adjoint of -Del.

4.4 Grad

If x is any tensor expression, Grad[x] is the gradient of x. It is the same as
Del[x], except that the last index is converted to contravariant by means of
the metric. If x is a scalar function (0-tensor), then Grad[x] is a vector field.

4.5 Laplacian

Laplacian[x] is the covariant Laplacian of the tensor expression x. There are
two common conventions in use for the Laplacian, and both are supported by
Ricci. Which convention is in effect is controlled by the value of the global
variable $LaplacianConvention. When $LaplacianConvention = DivGrad

(the default), Laplacian[x] is automatically replaced by Div[Grad[x]]. If

4 DERIVATIVES 27

$LaplacianConvention is set to PositiveSpectrum, then Laplacian[x] is re-
placed by -Div[Grad[x]].

4.6 Extd

Extd[x] represents the exterior derivative of the differential form x. In output
form, Extd[x] appears as d[x]. Ricci automatically expands exterior deriva-
tives of sums, scalar multiples, powers, and wedge products.

WARNING: It is tempting to type d[x] in input form. Because the symbol d
has not been defined as a Ricci function, Ricci simply returns d[x] unevaluated.
You may not be able to tell immediately from Ricci’s output that it is not
interpreting d[x] as exterior differentiation, unless you happen to notice that it
has not expanded derivatives of sums or products that appear in the argument
to d.

4.7 ExtdStar

ExtdStar is the formal adjoint of Extd with respect to the Hodge inner product.
It is used in constructing the Laplace-Beltrami operator, described in Section
4.8 below. If x is a differential k-form, ExtdStar[x] is a (k−1)-form. In output
form, ExtdStar appears as shown here:

In[29]:= ExtdStar[alpha]

*

Out[29]= d [alpha]

4.8 LaplaceBeltrami

LaplaceBeltrami[x] is the Laplace-Beltrami operator Δ = dd∗ + d∗d applied
to x, which is assumed to be a differential form. It is automatically replaced by
Extd[ExtdStar[x]] + ExtdStar[Extd[x]].

4.9 Lie

If v is a vector field (i.e., a contravariant 1-tensor) and x is any tensor expression,
Lie[v,x] represents the Lie derivative of x with respect to v. When v and x

are both vector fields, Lie[v,x] is their Lie bracket, and Ricci puts v and x in
lexical order using the skew-symmetry of the Lie bracket.

Lie derivatives of differential forms are not automatically expanded in terms
of exterior derivatives and interior multiplication, because there may be some

4 DERIVATIVES 28

situations in which you do not want this transformation to take place. You can
cause them to be expanded by applying the rule LieRule:

In[13]:= Lie[v,beta]

Out[13]= Lie [beta]

v

In[14]:= % /. LieRule

Out[14]= d[Int [beta]] + Int [d[beta]]

v v

5 SIMPLIFYING AND TRANSFORMING EXPRESSIONS 29

5 Simplifying and Transforming Expressions

This chapter describes commands that can be used to simplify tensor expres-
sions, or to perform various transformations such as expanding covariant deriva-
tives in terms of ordinary directional derivatives or vice versa.

The commands in this chapter that take only one argument can be applied
only to selected terms of an expression. For example, TensorSimplify[x,n]
simplifies only term n, leaving the rest of the expression unchanged.
TensorSimplify[x,{n1,n2,n3,...}] simplifies terms n1, n2, n3, . . . , com-
bining terms if possible, but leaving the rest of x unchanged. The Reference
List, Chapter 8, describes which commands accept this syntax.

5.1 TensorSimplify

The most general simplification command provided by Ricci is TensorSimplify.
TensorSimplify[x] attempts to put an indexed tensor expression x into a
canonical form. The rules applied by TensorSimplify may not always result in
the simplest-looking expression, but two component expressions that are math-
ematically equal will usually be identical after applying TensorSimplify.

TensorSimplify expands products and powers of tensors, uses metrics to raise
and lower indices, tries to rename all dummy indices in a canonical order,
and collects all terms containing the same tensor factors but different con-
stant factors. When there are two or more dummy index pairs in a single
term, TensorSimplify tries exchanging names of dummy indices in pairs, and
chooses the lexically smallest expression that results. This algorithm may not
always recognize terms that are equal after more complicated rearranging of
dummy index names; an alternative command, SuperSimplify, works harder
to get a canonical expression, at the cost of much slower execution.

TensorSimplify makes only those simplificatons that arise from the routine
changing of dummy index names and the application of symmetries and alge-
braic rules that the user could easily check. More complicated simplifications,
such as those that arise from the Bianchi identities or from commuting covariant
derivatives, are done only when you request them. The basic reason for this dis-
tinction is so that you will not be confronted by a mystifyingly drastic and unx-
plainable simplification. To reorder covariant derivatives, that is, the ones that
come after “;”, use OrderCovD or CovDSimplify. To apply Bianchi identities,
apply one of the rules BianchiRules, FirstBianchiRule, SecondBianchiRule,
or ContractedBianchiRules.

TensorSimplify calls CorrectAllVariances, TensorExpand, AbsorbMetrics,
PowerSimplify, RenameDummy, OrderDummy, and CollectConstants. Any of
these commands can be used individually to provide more control over the
simplification process.

5 SIMPLIFYING AND TRANSFORMING EXPRESSIONS 30

5.2 SuperSimplify

SuperSimplify[x] does the same job as TensorSimplify[x], but works harder
at renaming dummy index pairs to find the lexically smallest version of the
expression. If there are two or more dummy index pairs in any term of x that
refer to the same bundle, SuperSimplify tries renaming the dummy indices in
all possible permutations, and chooses the lexically smallest result. If there are k
dummy index pairs per term, the time taken by SuperSimplify is proportional
to k!, while the time taken by TensorSimplify is proportional to k2. Thus
SuperSimplify can be very slow, especially when there are more than about 4
dummy pairs. This command should be used sparingly, only when you suspect
that some terms are equal but TensorSimplify has not made them look the
same.

5.3 TensorExpand

TensorExpand[x] expands products and positive integral powers in x, just as
Expand does, but maintains correct dummy index conventions and does not
expand constant factors.

TensorExpand is called automatically by TensorSimplify.

5.4 AbsorbMetrics

AbsorbMetrics[x] causes any metric components that appear contracted with
other tensors in x to be used to raise or lower indices; the metric components
themselves are eliminated from the expression. For example:

j k

Out[29]= a g

i j

In[29]:= AbsorbMetrics[%]

k

Out[30]= a

i

AbsorbMetrics is called automatically by TensorSimplify.

5.5 RenameDummy

RenameDummy[x] changes the names of dummy indices in x to standard names,
choosing index names in alphabetical order from the list associated with the

5 SIMPLIFYING AND TRANSFORMING EXPRESSIONS 31

appropriate bundle, and skipping those names that already appear in x as free
indices. When the list of index names is exhausted, computer-generated names
of the form kn are used, where k is the last index name in the list and n is an
integer. RenameDummy does not try to make the “best” choice of index names
for the expression; use OrderDummy to do that.

RenameDummy is called automatically by TensorSimplify.

5.6 OrderDummy

OrderDummy[x] attempts to put the dummy indices occurring in the tensor
expression x in a “canonical form”. All pairs of dummy indices are ordered so
that the lower member appears first whenever possible. Then OrderDummy tries
various permutations of the dummy index names in each term of x, searching
for the lexically smallest version of the expression among all equivalent versions.
OrderDummy has an option called Method, which controls how hard it works to
find the best arrangement of dummy index names. See the Reference List,
Chapter 8, for details.

OrderDummy is called automatically by TensorSimplify.

5.7 CollectConstants

CollectConstants[x] groups together terms in the tensor expression x hav-
ing the same tensor factors but different constant factors, and performs some
simplification on the constant factors.

CollectConstants is called automatically by TensorSimplify.

5.8 FactorConstants

FactorConstants[x] applies the Mathematica function Factor to the constant
factor in each term of x.

5.9 SimplifyConstants

SimplifyConstants[x] applies the Mathematica function Simplify to the con-
stant factor in each term of x.

5.10 BasisExpand

If x is any tensor expression, BasisExpand[x] expands all tensors in x into
component expressions multiplied by the default basis vectors and covectors.
For example, suppose a is a 2-tensor:

5 SIMPLIFYING AND TRANSFORMING EXPRESSIONS 32

In[34]:= BasisExpand[2 a]

k1 k2

Out[34]= 2 a Basis (X) Basis

k1 k2

Because of the limitations of the index notation, there is no provision for ex-
panding tensors automatically with respect to any basis other than the default
one; you can usually accomplish the same thing by using DefineRule to create
transformation rules between the default basis and other bases.

If x is a scalar (rank 0) expression, BasisExpand[x] causes all index slots to be
filled, thus converting x to a component expression.

5.11 BasisGather

Sometimes you may want to convert a component expression for a tensor back
to pure tensor form. BasisGather allows you to do this. For example, we can
undo the effect of BasisExpand in Out[34] above:

In[35]:= BasisGather[%34,a]

Out[35]= 2 a

The second argument to BasisGather can in principle be any tensor expression,
although BasisGather may not recognize the basis expansion of complicated
expressions. It works best if you apply TensorExpand (or TensorSimplify)
before applying BasisGather. You can gather several tensor expressions at
once by putting a list of expressions in the second argument.

5.12 CovDExpand

CovDExpand[x] expands all covariant derivatives in x into ordinary direc-
tional derivatives and connection components. Directional derivatives of com-
ponents of tensors are represented by expressions like Del[Basis[L[i]],

a[L[j],L[k]]]. For example:

5 SIMPLIFYING AND TRANSFORMING EXPRESSIONS 33

Out[35]= a

j k ;i

In[36]:= CovDExpand[%]

k3 k4

Out[36]= Del [a] - a Conn - a Conn

i j k k3 k j i j k4 k i

Here Conn represents the coefficients of the default connection with respect to
the default basis. See Section 7.5, “Connections, torsion, and curvature”, for
more information.

5.13 ProductExpand

ProductExpand[x] expands symmetric products and wedge products of 1-
tensors that occur in x, and rewrites them in terms of tensor products. For
example, assuming $WedgeConvention = Alt, you would get the following re-
sult:

i j

Out[5]= Basis ^ Basis

In[6]:= %//ProductExpand

1 i j 1 j i

Out[6]= - Basis (X) Basis - - Basis (X) Basis

2 2

You can reverse the effect of ProductExpand by applying Alt to an alternating
tensor expression, or Sym to a symmetric expression; these operators replace
tensor products by wedge or symmetric products.

5.14 PowerSimplify

PowerSimplify[x] performs various simplifications on powers that appear in
x, such as transforming a^p b^p to (a b)^p, and (a^b)^c to a^(b c) when
possible, and expanding and collecting constants in expressions that appear as
base or exponent of a power.

PowerSimplify is called automatically by TensorSimplify.

5 SIMPLIFYING AND TRANSFORMING EXPRESSIONS 34

5.15 CorrectAllVariances

CorrectAllVariances[x] changes the variances (upper to lower or lower to
upper) of all indices occurring in x whose variances are not correct for their
positions, by inserting appropriate metric coefficients. For example, suppose v

is a vector field (i.e., a contravariant 1-tensor):

j

Out[41]= v

i ; k

In[42]:= CorrectAllVariances[%]

j k4 k3

Out[42]= g g v

i k3 ;k4 k

5.16 NewDummy

NewDummy[x] replaces all dummy index pairs in x with computer-generated
dummy index names of the form kn, where k is the last name in the list of
indices associated with the appropriate bundle, and n is a unique integer. This
is sometimes useful when you want to insert an index with the same name as
a dummy name that appears in x. For example, suppose a is a 2-tensor. After
applying TensorSimplify, the output from BasisExpand[a] becomes:

i j

Out[31]= a Basis (X) Basis

i j

If you want the (i, k)-component of this expression, you cannot just type
%[L[i],L[k]], because i would then appear twice as a lower index—once in
the output expression Out[31], and once in the inserted index. The correct
procedure is to use NewDummy:

In[32]:= NewDummy[%] [L[i],L[k]]

Out[33]= a

i k

5 SIMPLIFYING AND TRANSFORMING EXPRESSIONS 35

5.17 CommuteCovD

CommuteCovD[x, L[i], L[j]] changes all adjacent occurrences in the tensor
expression x of indices L[i],L[j] (in the given order) after the “;” to L[j],L[i]
by adding appropriate curvature and torsion terms. For example, suppose a is
a 2-tensor on a Riemannian tangent bundle (assuming $RiemannConvention =

SecondUp):

Out[35]= a

i j ;k l

In[36]:= CommuteCovD[%, L[k], L[l]]

l1 l2

Out[36]= a + a Rm + a Rm

i j ;l k l1 j i k l i l2 j k l

5.18 OrderCovD

OrderCovD[x] puts all derivative indices (those appearing after “;”) in the ten-
sor expression x into lexical order, by adding appropriate curvature and torsion
terms. OrderCovD is used by CovDSimplify.

5.19 CovDSimplify

CovDSimplify[x] attempts to simplify x as much as possible, putting all
dummy indices in lexical order, including those that result from differentiation.
CovDSimplify calls TensorSimplify, then OrderCovD, then TensorSimplify

again. For very complicated expressions, it is probably more efficient to use the
other simplification commands individually.

5.20 LowerAllIndices

LowerAllIndices[x] converts all upper indices in x (except those appearing
on Basis covectors or metrics) to lower indices by inserting metrics as needed.

5.21 TensorCancel

TensorCancel[x] attempts to simplify products and quotients of tensor expres-
sions by combining and canceling factors that are equal even though they have
different dummy index names. For example:

5 SIMPLIFYING AND TRANSFORMING EXPRESSIONS 36

i 3 j -1

Out[37]= (1 + u u) (1 + u u)

;i ; ;j ;

In[38]:= TensorCancel[%]

i 2

Out[38]= (1 + u u)

;i ;

6 DEFINING RELATIONS BETWEEN TENSORS 37

6 Defining Relations Between Tensors

Because the internal and external forms of tensors differ, you should never use
the name of a tensor on the left-hand side of an assignment or rule, such as
a=b, a:=b, a->b, or a:>b. Ricci provides two commands, DefineRelation and
DefineRule, to create such assignments and rules. This is a common source of
error. To emphasize:

Never use the name of a tensor on the left-hand side of an
assignment or rule; use DefineRelation or DefineRule instead.

6.1 DefineRelation

If you want to cause one tensor always to be replaced by some other tensor
expression, or to be replaced only when certain indices are inserted, you can use
DefineRelation. The basic syntax is shown by the following example:

In[39]:= DefineRelation[a, 2 b]

Relation defined.

In[40]:= a[L[i],L[j]]

Out[40]= 2 b

i j

This use of DefineRelation specifies that every occurrence of the tensor
a should be replaced by 2 b. The replacement specified in such a call to
DefineRelation is made whether or not indices are inserted into a.

The first argument to DefineRelationmust be a single tensor, with or without
indices; it cannot be a more complicated expression. (The principal reason is
that Mathematica requires every relation to be associated with a specific sym-
bol, and Ricci’s philosophy is to associate your definitions only with your own
symbols, so that they can all be saved by Ricci. If you tried to define a relation
involving a complicated tensor expression, it would have to be associated with a
Ricci or system function.) You can use DefineRule, described below, to define
transformation rules whose left-hand sides are arbitrary tensor expressions.

You can cancel any relation created by DefineRelation by calling
UndefineRelation. The single argument to UndefineRelation must be
exactly the same as the first argument in the corresponding call to
DefineRelation. For example:

In[41]:= UndefineRelation[a]

6 DEFINING RELATIONS BETWEEN TENSORS 38

Relation undefined.

You can also use DefineRelation to replace a tensor only when it appears with
certain indices. For example, suppose e is a 3-tensor:

In[42]:= DefineRelation[e[L[i],U[i],L[j]], v[L[j]]]

Relation defined.

This tells Ricci that the indexed version of e is to be replaced by v when the
first two indices of e are contracted with each other. (Note that you do not
use underscores in the dummy index names for DefineRelation, as you would
in defining a relation directly with Mathematica.) The replacement takes place
regardless of the actual names of the indices or whether they are upper or lower,
provided the corresponding indices refer to the same bundles as i and j. For
example:

In[43]:= e[U[j],L[j],L[k]]

Out[43]= v

k

In general, the relation created by DefineRelation recognizes any equivalent
relations resulting from raising and lowering indices, changing index names,
conjugation, and inserting extra indices, provided that all indices refer to
the same bundles as the corresponding indices that were used in the call to
DefineRelation. It does not recognize relations resulting from symmetries,
however—you must define all such equivalent relations explicitly.

You can specify that the relation should be applied only under certain conditions
by giving DefineRelation a third argument, which is a True/False condition
that must be satisfied before the relation is applied. The condition may refer
to the index names used in the first argument. For example, suppose u is a
scalar function on a Riemannian tangent bundle, and you would like the first
and second covariant derivatives of u always to be placed in lexical order (this
is not done automatically by Ricci). You could define the following conditional
relation:

6 DEFINING RELATIONS BETWEEN TENSORS 39

In[44]:= DefineRelation[u[L[i],L[j]], u[L[j],L[i]],

!IndexOrderedQ[{L[i],L[j]}]]

Relation defined.

In[45]:= u[L[j],L[i]]

Out[45]= u

;i j

6.2 DefineRule

Sometimes you may want to define a transformation rule that is not applied
automatically, but only when you request it. Such transformations are done
in Mathematica via rules. The Ricci function DefineRule allows you to define
rules whose left-hand sides involve tensors.

For example, here’s how to define rules that replace the tensor a by 2 b and
vice versa:

In[52]:= DefineRule[atob, a, 2 b]

Rule defined.

In[53]:= DefineRule[btoa, b, a/2]

Rule defined.

In[54]:= a[L[i],L[j]]

Out[54]= a

i j

In[55]:= % /. atob

Out[55]= 2 b

i j

In[56]:= % /. btoa

Out[56]= a

i j

6 DEFINING RELATIONS BETWEEN TENSORS 40

DefineRule has another advantage over DefineRelation: the left-hand side of
the transformation rule defined by DefineRule can be any tensor expression,
not just a single tensor with or without indices. Thus, suppose you want to
convert the inner product of a and b to 0 wherever it occurs. You could define
the following rules:

In[57]:= DefineRule[ortho, Inner[a,b], 0]

Rule defined.

In[58]:= DefineRule[ortho, a[L[i],L[j]] b[U[i],U[j]], 0]

Rule defined.

The symbol ortho is now a list containing these two transformation rules. The
first rule transforms the pure-tensor expression for <a, b> to 0, while the second
rule takes care of the component expression. Here’s how it works:

In[60]:= a[L[j],L[k]] b[U[j],U[k]]

j k

Out[60]= a b

j k

In[61]:= % /. ortho

Out[61]= 0

Each time you call DefineRule, the new transformation rule you give is ap-
pended to a list containing ones already defined under the same name. To start
over from scratch, you can include the option NewRule -> True (or just execute
the assignment ortho=.).

The rule created by DefineRule recognizes any equivalent substitutions result-
ing from raising and lowering indices and changing index names. In addition,
if the second argument is a single tensor name with or without indices, it rec-
ognizes equivalent substitutions resulting from conjugation and inserting extra
indices.

7 SPECIAL FEATURES 41

7 Special Features

7.1 One-dimensional bundles

One-dimensional bundles receive special treatment in Ricci. Since there is only
one basis element, Ricci uses only one index name for all indices referring to the
bundle. This is the only case in which an index can legitimately appear more
than once as a lower or upper index in the same term.

When you define a one-dimensional bundle, you may only give one index name.
When Ricci generates dummy indices for the bundle, it uses only this index
name instead of generating unique names.

If you define a one-dimensional bundle with the option OrthonormalFrame ->

True, the metric coefficient with respect to the default basis is always equal to
1. TensorSimplify then puts all indices associated with this bundle at their
natural altitude, as specified in the corresponding call to DefineTensor.

7.2 Riemannian metrics

You specify that a bundle is a tangent bundle with a Riemannian metric by in-
cluding the option MetricType -> Riemannian in your call to DefineBundle.
This automatically causes the torsion of the default connection to be set to
0, and defines the Riemannian, Ricci, and scalar curvature tensors. By de-
fault, these are named Rm, Rc, and Sc; you may give them any names you wish
by including the DefineBundle options RiemannTensor -> name, RicciTensor
-> name, and ScalarCurv -> name. If you define more than one Riemannian
tangent bundle, you must give different names to the curvatures on different
bundles.

On a Riemannian tangent bundle, curvature components are automatically con-
verted to components of the Riemannian curvature tensor, and contractions of
the curvature tensor are automatically converted to the Ricci or scalar cur-
vature as appropriate. The first and second Bianchi identities, however, are
not automatically applied; you can specifically apply them using the Ricci
rules FirstBianchiRule, SecondBianchiRule, ContractedBianchiRules, and
BianchiRules, described in the Reference List, Chapter 8.

There are two common sign conventions in use for indices of the Riemannian
curvature tensor. Ricci supports both; you can control which one is used for
any particular Riemannian tangent bundle either by setting the global variable
$RiemannConvention or by including the RiemannConvention option in the
call to DefineBundle. See DefineBundle in the Reference List, Chapter 8, for
details.

You may convert components of the Riemannian, Ricci, and scalar curvature
tensors of a Riemannian tangent bundle to connection components (Christof-
fel symbols) and their derivatives by applying the Ricci rule CurvToConnRule.

7 SPECIAL FEATURES 42

Connection components, in turn, can be converted to expressions involving di-
rectional derivatives of the metric components by applying ConnToMetricRule.
(Note, however, that the latter rule applies only to bundles that have been given
the option CommutingFrame -> True, since this is the only case in which the
connection components can be expressed purely in terms of derivatives of the
metric.)

7.3 Matrices and 2-tensors

Because every bundle has a default metric, any 2-tensor on a given bundle can
be interpreted as a linear endomorphism of the bundle. Ricci supports various
matrix computations with such tensors.

The basic operation is matrix multiplication, which is indicated by Dot. For
example, if a and b are 2-tensors, then a.b or Dot[a,b] represents their matrix
product. If v is a 1-tensor, a.v represents the matrix a acting on the vector
v. Because the metric is used automatically to raise and lower indices, no
distinction is made between row and column vectors, or between covariant and
contravariant tensors, for this purpose.

The identity matrix on any bundle can be represented by the tensor Kronecker,
whose components are the Kronecker delta symbols. Ricci automatically rec-
ognizes some basic relations involving multiplication by Kronecker, such as
a.Kronecker = Kronecker.a = a.

The inverse of any 2-tensor expression a is represented by Inverse[a]. When
you insert indices into an inverse tensor, Ricci in effect creates a new tensor
whose name is Inverse[a]. For example:

In[66]:= Inverse[a]

-1

Out[66]= a

In[67]:= % [U[i],U[j]]

-1 i j

Out[67]= (a)

Ricci recognizes that multiplication by the inverse of a tensor yields the identity
tensor, whether as components or as pure tensors:

7 SPECIAL FEATURES 43

In[68]:= a . b . Inverse[b]

Out[68]= a

In[69]:= a[L[i],L[j]] Inverse[a] [U[j],U[k]]

k

Out[69]= Kronecker

i

You can express the trace of a 2-tensor (with respect to the default metric) by
Tr[a], its transpose by Transpose[a], and its determinant by Det[a]. When
you insert indices into Tr[a] or Transpose[a], Ricci computes the compo-
nents explicitly in terms of the components of a. For Det, however, there is
no straighforward way to express the determinant of a matrix using the index
conventions, so Det[a] is maintained unevaluated. Ricci’s differentiation com-
mands compute derivatives of Det[a] in terms of derivatives of components of
a and Inverse[a].

7.4 Product tensors

It often happens that a tensor is associated with the tensor product of two or
more bundles. In Ricci, such a tensor is called a product tensor. A product
tensor is defined by giving a list of positive integers as the rank of the tensor
in the DefineTensor command. The rank of the tensor is the sum of all the
numbers in the list; each number in the list corresponds to a group of indices,
which can have its own symmetries and can be associated to a separate bundle
or direct sum of bundles. Indices can be inserted into a product tensor “one
group at a time”: for example, if t is a product tensor whose rank is specified
as {2,3}, you can insert either two or five indices. Once the first two indices
are inserted, the resulting expression is considered to be a 3-tensor, with the
symmetries and bundles associated with the second group of indices.

The Bundle and Symmetries options of DefineTensor have special interpreta-
tions for product tensors.

• Bundle -> {bundle1,bundle2,...}: the list of bundles must be the
same length as the list of ranks. Each bundle in the list is associated
with the corresponding set of index slots. Other forms are Bundle ->

bundle, which means that all indices are associated with the same bun-
dle, and Bundle -> {{b1,b2},{b3,b4},...}, which means that each set
of index slots is associated with a direct sum of bundles.

• Symmetries -> {sym1,sym2,...}: again, the list of symmetries must be
the same length as the list of ranks. Each symmetry applies to the corre-

7 SPECIAL FEATURES 44

sponding set of index slots. The only other acceptable form for product
tensors is Symmetries -> NoSymmetries, which is the default.

One common use of product tensors is in defining arbitrary connections and
their curvatures. In fact, the built-in tensors Conn and Curv are defined as
product tensors.

For example, the following command defines a rank-4 tensor whose first two
index slots refer to the sum of fiber and its conjugate, and whose last two refer
to tangent. It is skew-symmetric in the last two indices, with no symmetries in
the first two. It is contravariant in the second index and covariant in the other
three.

In[62]:= DefineTensor[

omega, {2,2},

Bundle -> { {fiber,Conjugate[fiber]}, tangent },

Symmetries -> {NoSymmetries,Skew},

Variance -> {Co,Con,Co,Co}]

When you insert indices into this tensor, you may either insert the first two
indices only, or insert all four at once. (There is no provision for inserting only
the last two indices.) When the first two indices are inserted, the result is a
skew-symmetric covariant 2-tensor associated with the tangent bundle. For
example, assuming index names a, b, c are associated with fiber:

In[5]:= omega[L[a],U[b]]

b

Out[5]= omega

a

In[6]:= %//BasisExpand

b k6 k7

Out[6]= omega Basis ^ Basis

a k6 k7

Another way to use a product tensor is to represent a section of Hom(a, b),
where a and b are vector bundles. Suppose you define a tensor hom as follows:

In[35]:= DefineTensor[hom, {1,1}, Bundle -> {b,a},

Variance -> {Con,Co}]

Then hom is a section of b⊗ a∗, or equivalently a homomorphism from a to b.

7 SPECIAL FEATURES 45

7.5 Connections, torsion, and curvature

Ricci assumes that every bundle comes with a default connection that is compat-
ible with its metric. (This assumption is forced by the limitations of the index
convention, since the notation for components of covariant derivatives gives no
indication what connection is being used.)

The name for the default connection on any bundle is Conn. Conn is a product
tensor of rank {2,1}, whose first two indices can come from any bundle, and
whose third index is associated with the underlying tangent bundle of the first
two. When you insert the first two indices, you get an entry of the matrix of
connection 1-forms corresponding to the default basis, defined by the relation:

∇Basis i = Basisj ⊗ Conn i
j .

When you insert the third index, you get the connection coefficients (Christoffel
symbols) for the default connection with respect to the default basis. These are
defined by:

∇BasiskBasisi = Conn i
j
kBasisj .

For example, suppose that indices a, b, c refer to the bundle fiber, and i, j, k
refer to the underlying tangent bundle. The connection 1-forms of fiber would
be expressed as:

b

Out[15]= Conn

a

In[16]:= BasisExpand[%]

b k8

Out[16]= Conn Basis

a k8

Because the default metric on any bundle is assumed to be compatible with its
metric, the coefficients of the metric satisfy the compatibility equation

d(gij) = Connij + Connji,

where the second index of Conn has been lowered by the metric. This relation is
not applied automatically by Ricci, but you can force Ricci to replace derivatives
of the metric by connection forms by applying the rule CompatibilityRule.

A connection on the tangent bundle of a manifold may or may not have tor-
sion. Ricci assumes that connections are torsion-free, unless you specify that
a particular connection may have non-vanishing torsion by adding the option
TorsionFree -> False to the DefineBundle command when the bundle is cre-
ated. The name of the torsion tensor on any bundle is Tor. It is a product tensor

7 SPECIAL FEATURES 46

of rank {1,2}, whose first index can be associated with any (subbundle of a) tan-
gent bundle, and whose last two are associated with the full underlying tangent
bundle (or bundles, if the tangent bundle is a direct sum). It is skew-symmetric
in its last two indices. The torsion is defined by

∇jBasisk −∇kBasisj − [Basisj ,Basisk] = Tor ijkBasis i.

When the first index is inserted, Tor[U[i]] represents the torsion 2-form associ-
ated with the basis 1-form Basis[U[i]]. The first structure equation relates the
exterior derivatives of basis covectors on the tangent bundle to the connection
and torsion forms. Ricci does not perform this transformation automatically,
but you can cause it to be performed by applying FirstStructureRule:

i

Out[36]= d[Basis]

In[37]:= % /. FirstStructureRule

1 i k6 i

Out[37]= - Tor + Basis ^ Conn

2 k6

The 1/2 appears because, by Ricci’s default wedge product convention and index
conventions, the basis expansion of Tor[U[i]] has to be

i j k i j k

Tor Basis (X) Basis = Tor Basis ^ Basis

j k j k

without the factor of 1/2 that appears in the standard notation used in many
differential geometry texts. The 1/2 does not appear in the output from
FirstStructureRule when $WedgeConvention = Det, because in that case,

i j k 1 i j k

Tor Basis (X) Basis = - Tor Basis ^ Basis

j k 2 j k

The curvature associated with the default connection is called Curv. This is a
product tensor of rank {2,2}, which is skew-symmetric in both pairs of indices
(because the default connection is always assumed to be compatible with the
metric). The first two indices of Curv can refer to any bundle, and the last two
refer to its underlying tangent bundle. When you insert the first two indices, you
get the matrix of curvature 2-forms associated with the standard basis. When
all four indices are inserted, you get the components of the curvature tensor,

7 SPECIAL FEATURES 47

defined by

∇i∇jBasisk −∇j∇iBasisk −∇[Basis i,Basisj]
Basisk = Curvk

l
ijBasis l.

The second structure equation relates the exterior derivatives of the connection
forms to curvature forms. Like the first structure equation, it is applied only
when you specifically request it by applying SecondStructureRule:

j k j

Out[15]= d[Conn] - Conn ^ Conn

i i k

In[16]:= % /. SecondStructureRule //TensorSimplify

1 j

Out[16]= - Curv

2 i

As described above for Tor, the factor 1/2 appears when $WedgeConvention =

Alt, but not when $WedgeConvention = Det.

You can cause components of the curvature tensor Curv to be expanded in terms
of components of Conn and their directional derivatives by applying the Ricci
rule CurvToConnRule.

You can apply all three structure equations (CompatibilityRule,
FirstStructureRule, and SecondStructureRule) at once by using the
rule StructureRules.

If an expression involving derivatives of connection forms is converted to a com-
ponent expression, the derivatives of the connection coefficients are maintained
in a form such as

j

Del [Conn]

k i

since “covariant derivatives” of connection coefficients make no invariant sense.
This is the only instance in which Ricci does not by default express components
of derivatives in terms of covariant derivatives.

7.6 Non-default connections and metrics

You may want to compute covariant derivatives with respect to a connection or
a metric other than the default one on a given bundle. Many of Ricci’s differ-
entiation commands accept the Connection option to indicate that covariant
derivatives are to be taken with respect to a non-default connection. Ordinarily,

7 SPECIAL FEATURES 48

the value of the Connection option should be an expression of the form Conn +

diff, where diff is a 3-tensor expression that represents the “difference tensor”
between the given connection and the default connection. For example, suppose
diff is a 3-tensor:

In[23]:= Del[a, Connection -> Conn + diff]

(Conn + diff)

Out[23]= Del [a]

In[24]:= %[L[i],L[j],L[k]]

k36 k37

Out[24]= a - a diff - a diff

i j ;k k36 j i k i k37 j k

Notice that the components are expanded in terms of covariant derivatives of a
(with respect to the default connection) and components of diff.

You can also call CovD with the Connection option. For example, the following
input expression results in the same output as Out[24] above:

In[25]:= CovD[a[L[i],L[j]], {L[k]}, Connection -> Conn + diff]

Other operators that accept the Connection option are Div, Grad, and
Laplacian.

On a Riemannian tangent bundle, you can also specify that operations are to
be computed with respect to a metric other than the default one. This is done
by adding the Metric option to the appropriate Ricci function. For example,
suppose h is a symmetric 2-tensor. To compute the covariant derivative of the
tensor a with respect to the metric h, you could use

In[60]:= Del[a , Metric -> h]

(h)

Out[60]= Del [a]

When you insert indices, the components of this expression are computed in
terms of covariant derivatives of a and h (with respect to the default metric).
Other differentiation operators that accept the Metric option are Grad, Div,
ExtdStar, Laplacian, LaplaceBeltrami, and CovD.

Ricci can explicitly compute the Riemannian, Ricci, and scalar curva-
tures of a non-default metric h. These are indicated by the expressions
RiemannTensor[h], RicciTensor[h], and ScalarCurv[h], respectively. When
you insert indices into these, you get expressions for the curvatures in terms

7 SPECIAL FEATURES 49

of the curvatures of the default metric and covariant derivatives of h. You
can also refer to the Levi-Civita connection of a non-default metric by
LeviCivitaConnection[h]; this produces a 3-tensor that is suitable as an input
to the Connection option of the differentiation functions as described above.

8 REFERENCE LIST 50

8 Reference List

8.1 Ricci commands and functions

The list below describes all Ricci functions that are accessible to users. All
the essential information about each function is collected here in brief form,
including a list of all available options. The numbers at the right-hand sides of
the function descriptions refer to section numbers in the main text where these
functions are described. (Some less often used functions are documented only
here in the Reference List.)

For more information and examples on how to use the most common commands,
see the main text. For descriptions of Ricci’s global variables (symbols starting
with $), see the end of this chapter.

AbsorbMetrics 5.4

AbsorbMetrics[x] simplifies x by eliminating any metrics that are con-
tracted with other tensors, and using them instead to raise or lower in-
dices. AbsorbMetrics[x,n] or AbsorbMetrics[x,{n1,n2,...}] applies
AbsorbMetrics only to term n or to terms n1,n2,... of x.

Option:

• Mode -> All or NoOneDims. NoOneDims indicates that metrics asso-
ciated with one-dimensional bundles should not be absorbed, unless
they are paired with other metrics. This option exists mainly for
internal use by TensorSimplify, so that it can control the order in
which different metrics are absorbed. Default is All.

See also TensorSimplify, LowerAllIndices, CorrectAllVariances.

Alt 3.8

Alt[x] is the alternating part of the tensor expression x. If x is alternating,
then Alt[x] = x.

Alt is also a value for the global variable $WedgeConvention.

See also Sym, Wedge, $WedgeConvention.

Alternating 2.4

Alternating is a value for the Symmetries option of DefineTensor.

Any 2.1

Any can be used as a value for the Bundle option of the DefineTensor

command. Bundle -> Any means that indices from any bundle can be
inserted.

8 REFERENCE LIST 51

Bar 2.2, 2.4

Bar is an internal symbol used by Ricci for representing conjugates
of tensors and indices. The internal form for a barred index is
L[i[Bar]] or U[i[Bar]]. In input form, these can be abbreviated
LB[i] and UB[i]. The internal form for the conjugate of a ten-
sor is Tensor[name[Bar],{...},{...}]. In input form, this is typed
Conjugate[name] [...] [...]. See also Tensor, Conjugate, L, U, LB,
UB.

Basis 2.4, 5.10

Basis is the name used for generic basis vectors and covectors for any
bundle. Basis vectors are generated automatically by BasisExpand. For
example, if index name i is associated with bundle b, then Basis[L[i]]

and Basis[U[i]] represent contravariant and covariant basis elements
for b (i.e., basis elements for b and its dual), respectively; Basis[LB[i]]
and Basis[UB[i]] represent basis elements for the conjugate bundle
Conjugate[b] and its dual.

Basis is defined by Ricci as a product tensor of rank {1,1}, with the
special option Bundle -> Same: this means that the first index can be
associated with any bundle, but when a second index is inserted, it must
be associated with the same bundle as the first, or else the result is 0.
If you insert an index into Basis[L[i]] or Basis[U[i]], you get Kro-
necker delta coefficients, metric coefficients (which result from lowering or
raising an index on the Kronecker delta), or 0 as appropriate. See also
BasisExpand, BasisName, CoBasisName, Kronecker.

BasisExpand 2.4, 5.10

BasisExpand[x] expands all tensors appearing in x into component ex-
pressions multiplied by basis vectors and covectors, Basis[L[i]] and
Basis[U[j]]. BasisExpand[x,n] or BasisExpand[x,{n1,n2,...}] ap-
plies BasisExpand only to term n or to terms n1,n2,... of x.
BasisExpand also inserts indices into all unfilled index slots, so it can
be used to turn a scalar tensor expression into a component expression.
See also Basis, BasisGather, CovDExpand, ProductExpand.

BasisGather 5.10

BasisGather[x,y] attempts to recognize the basis expression for y in x,
and replaces it by y. BasisGather[x, {y1,y2,...}] does the same
thing for several expressions at once. In effect, BasisGather is a partial
inverse for BasisExpand. See also BasisExpand.

BasisName 2.4

BasisName -> name is an option for DefineBundle. It specifies the name
to be used in input and output form for the basis vectors for the bundle
being defined.

8 REFERENCE LIST 52

BianchiRules 7.2

BianchiRules[L[i],L[j],L[k]] is a rule that converts Riemannian cur-
vature tensors containing the indices L[i], L[j], L[k] in order to two-term
sums, using the first and second Bianchi identities. The three indices may
be upper indices, lower indices, or a combination. The first Bianchi rule is
applied to any tensor with with Symmetries -> RiemannSymmetries; the
second is applied only to tensors that have been defined as Riemannian
curvature tensors by DefineBundle.

examples:

i

Out[16]= Rm

j k l

In[17]:= % /. BianchiRules[L[j],L[k],L[l]]

i i

Out[17]= Rm - Rm

k j l l j k

m

Out[20]= Rm

i j k l ;

In[21]:= %/.BianchiRules[L[k],L[l],U[m]]

m m

Out[21]= Rm - Rm

i j k ;l i j l ;k

See also DefineBundle, FirstBianchiRule, SecondBianchiRule,
ContractedBianchiRules.

Bundle 2.4

Bundle -> name is a DefineTensor option, specifying the name of the
bundle or bundles the tensor is to be associated with.

The function Bundle[i] returns the name of the bundle associated with
the index i.

BundleDummy

BundleDummy[bundle] returns the symbol that is used for computer-
generated dummy indices associated with the bundle. This is the last
index name in the list BundleIndices[bundle]. For most bundles, new

8 REFERENCE LIST 53

dummy indices are of the form kn, where k=BundleDummy[bundle] and
n is an integer. For one-dimensional bundles, n is omitted. See also
BundleIndices, DefineBundle.

BundleIndices

BundleIndices[bundle] returns a list of the index names currently asso-
ciated with bundle. See also BundleDummy, DefineBundle.

BundleQ

BundleQ[x] returns True if x is the name of a bundle, and False other-
wise. See also DefineBundle.

Bundles

The function Bundles[x] returns a list of the bundles associated with
each index position in the tensor expression x; each entry in the list is a
sublist giving the allowed bundles for that index position. If you insert an
index that is not associated with one of the bundles corresponding to that
index position, the expression gives 0. See also DefineTensor, Variance.

Co 2.4

Co is an abbreviation for Covariant.

CoBasisName 2.4

CoBasisName -> name is an option for DefineBundle. It specifies the
name to be used in input and output form for the basis covectors for the
bundle being defined.

CollectConstants 5.7

CollectConstants[x] groups together terms in the tensor expres-
sion x having the same tensor factors but different constant fac-
tors. CollectConstants[x,n] or CollectConstants[x,{n1,n2,...}]
applies CollectConstants only to term n or to terms n1,n2,... of
x. The constant factors are simplified somewhat: if a constant fac-
tor is not too complicated (LeafCount[c] ≤ 50), Ricci factors the
constant. For larger constant expressions, it applies the Mathemat-
ica function Together. See also TensorSimplify, FactorConstants,
SimplifyConstants, ConstantFactor, TensorFactor.

CommuteCovD 5.17

CommuteCovD[x, L[i], L[j]] changes all adjacent occurrences of in-
dices L[i],L[j] after the “;” to L[j],L[i] by adding appropriate curva-
ture and torsion terms. The second and third arguments may be upper
or lower indices. See also OrderCovD, CovDSimplify.

8 REFERENCE LIST 54

CommutingFrame 2.1

CommutingFrame is a DefineBundle option. Default is True.

CompatibilityRule 7.5

CompatibilityRule is a rule that transforms derivatives of metric com-
ponents into connection coefficients, using the fact that the default con-
nection is compatible with the metric, which is expressed by

d(gij) = Connij + Connji.

See also FirstStructureRule, SecondStructureRule,
StructureRules.

Complex 2.1, 2.3, 2.4, 2.6

Ricci recognizes Complex as a value for the Type option of
DefineConstant, DefineTensor, DefineBundle, and
DefineMathFunction.

Con 2.4

Con is an abbreviation for Contravariant.

Conjugate 2.1, 2.2, 2.4, 2.6

The Ricci package modifies the Mathematica function Conjugate to han-
dle tensor expressions and indices. The behavior of a tensor, constant,
index, bundle, or mathematical function under conjugation is determined
by the Type option specified when the object is defined.

In input form, you indicate the conjugate of tensor t by typing
Conjugate[t]; you may follow this with one or more sets of indices in
brackets, as in Conjugate[t] [L[i],L[j]]. You indicate the conjugate
of an index L[i] or U[i] by typing LB[i] or UB[i]. To indicate the
conjugate of bundle b, type Conjugate[b]. You can compute the conju-
gate of any tensor expression x by typing Conjugate[x]. In output form,
conjugates of tensors, bundles, and indices appear as barred symbols.

The behavior of tensors and indices under conjugation is determined by
the Type options specified when the tensor and its associated bundles are
defined. For example, assume a, b, and c are 2-tensors of types Real,
Complex, and Imaginary, respectively. Assume i is an index associated
with a real bundle, and p is an index associated with a complex bundle:

8 REFERENCE LIST 55

Conjugate[a] = a _

i p i p

_

Conjugate[b] = b _

i p i p

Conjugate[c] = -c _

i p i p

See also Re, Im, DefineTensor, DefineConstant, DefineBundle,
Declare.

Conn 7.5, 7.6

Conn is the name used for the generic connection forms for the default
connection on any bundle. It is defined as a product tensor of rank {2,1}
and variance {Covariant, Contravariant, Covariant}. When the first
two indices are inserted, it represents an entry of the matrix of connection
1-forms associated with the default basis. When all three indices are
inserted, it represents the Christoffel symbols of the default connection
relative to the default basis. The upper index is the second one, and the
index representing the direction in which the derivative is taken is the
third one. Thus the Christoffel symbol Γk

ij is represented by

k

Conn [L[j],U[k],L[i]] --> Conn

j i

See also Curv, Tor, Curvature, Connection, LeviCivitaConnection,
CovDExpand, ConnToMetricRule, CurvToConnRule.

Connection 7.6

Connection -> cn is an option for Del, CovD, Div, Grad, and Laplacian.
It specifies that covariant derivatives are to be taken with respect to the
connection cn instead of the default connection.

ConnToMetricRule 7.2

ConnToMetricRule is a rule that causes indexed components of the
default connection Conn on a Riemannian tangent bundle to be con-
verted to expressions involving directional derivatives of the metric co-
efficients. This rule applies only to fully-indexed connection compo-
nents whose indices all refer to a single Riemannian tangent bundle with
the option CommutingFrame -> True. See also CurvToConnRule, Conn,
DefineBundle.

8 REFERENCE LIST 56

ConstantFactor

ConstantFactor[x] returns the product of all the constant factors in x,
which should be a monomial. See also TensorFactor, CollectConstants.

ConstantQ 2.3

ConstantQ[x] returns True if there are no explicit tensors in x, and False

otherwise. See also DefineConstant.

ContractedBianchiRules 7.2

ContractedBianchiRules is a rule that simplifies contracted covariant
derivatives of the Riemannian and Ricci curvature tensors using con-
tracted versions of the second Bianchi identity. For example (assuming
$RiemannConvention = SecondUp, which is the default),

l

Out[3]= Rm

i j k l ;

In[4]:= % /. ContractedBianchiRules

Out[4]= -Rc + Rc

i k ;j j k ;i

Similarly,

j

Out[5]= Rc

i j ;

In[6]:= % /. ContractedBianchiRules

1

Out[6]= - Sc

2 ;i

See also BianchiRules, FirstBianchiRule, SecondBianchiRule.

Contravariant 2.4

Contravariant is a value for the Variance option of DefineTensor, and
may be abbreviated Con. If an index slot is Contravariant, indices in
that slot are upper by default. See also DefineTensor.

CorrectAllVariances 5.15

CorrectAllVariances[x] changes the variances (upper to lower or

8 REFERENCE LIST 57

lower to upper) of indices in x whose variances are not cor-
rect for their positions, by inserting appropriate metric coefficients.
CorrectAllVariances[x,n] or CorrectAllVariances[x,{n1,n2,...}]
applies CorrectAllVariances only to term n or to terms n1,n2,... of
x.

Option:

• Mode -> All or OneDims. OneDims indicates that only one-
dimensional indices and indices that appear inside of differential op-
erators such as Del or Extd should be corrected. This option exists
mainly for internal use by TensorSimplify. Default is All.

See also TensorSimplify, LowerAllIndices, AbsorbMetrics.

Covariant 2.4

Covariant is a value for the Variance option of DefineTensor, and may
be abbreviated Co. If an index slot is Covariant, indices in that slot are
lower by default. See also DefineTensor.

CovD 4.2

If x is a rank-0 tensor expression, then CovD[x, {L[i],L[j]}] is the
component of the covariant derivative of x in the L[i],L[j] directions.
If x has any unfilled index slots, then it is first converted to a component
expression by generating dummy indices if necessary before the covariant
derivative is computed. The shorthand input form x[L[i], L[j]] is
automatically converted to CovD[x, {L[i],L[j]}] if x has rank 0. In
output form, covariant derivatives of a tensor are represented by subscripts
following a semicolon.

Options (for the explicit form CovD[x,{L[i],L[j]}] only):

• Connection -> cn specifies that covariant derivatives are to be
taken with respect to the connection cn instead of the default con-
nection. Ordinarily, cn should be an expression of the form Conn +

diff, where diff is a 3-tensor expression representing the “difference
tensor” between the default connection and cn.

• Metric -> g: a symmetric 2-tensor expression, indicating that the
covariant derivatives are to be taken with respect to the Levi-Civita
connection of g instead of the default metric for x’s bundle (which is
assumed to be Riemannian).

See also Del, InsertIndices, CovDExpand.

CovDExpand 5.12

CovDExpand[x] converts all components of covariant derivatives in
x to ordinary directional derivatives and connection coefficients.
CovDExpand[x,n] or CovDExpand[x,{n1,n2,...}] applies CovDExpand

8 REFERENCE LIST 58

only to term n or to terms n1,n2,... of x. Directional derivatives with
respect to basis elements are represented by Del[Basis[L[i]],...]. For
example:

k1

v // CovDExpand --> Del [v] - Conn v

i ;j j i j i k1

Ordinary directional derivatives can be converted back to covariant deriva-
tives by calling BasisExpand. See also BasisExpand, Del, Conn.

CovDSimplify 5.19

CovDSimplify[x] attempts to simplify x as much as possible by ordering
all dummy indices, including those that occur after the “;” in component
expressions. CovDSimplify[x,n] or CovDSimplify[x,{n1,n2,...}]
applies CovDSimplify only to term n or to terms n1,n2,... of
x. CovDSimplify first calls TensorSimplify, then OrderCovD,
then TensorSimplify again. See also OrderCovD, CommuteCovD,
TensorSimplify, SuperSimplify.

Curv 7.5, 7.6

Curv is the generic curvature tensor associated with the default connection
on any bundle. It is generated when covariant derivatives are commuted,
and when SecondStructureRule is applied to derivatives of connection
forms. Curv is a product tensor with rank {2,2}, which is Alternating in
its first two and last two indices. Inserting the first two indices yields the
matrix of curvature 2-forms associated with the default basis. Inserting all
four indices yields the coefficients of the curvature tensor. See also Conn,
Curvature, CurvToConnRule.

Curvature 7.5

Curvature[cn] is the curvature tensor associated to the connection cn.
Ordinarily, cn should be an expression of the form Conn + diff, where
diff is a 3-tensor expression representing the “difference tensor” between
the default connection and cn. See also Conn, Curv, CurvToConnRule.

CurvToConnRule 7.2, 7.5

CurvToConnRule is a rule that converts components of curvature tensors
(including Riemann, Ricci, and scalar curvature tensors for Riemannian
tangent bundles) to expressions involving connection coefficients and their
covariant derivatives. It is a partial inverse for SecondStructureRule. See
also Curv, Conn, ConnToMetricRule, SecondStructureRule.

Declare 2.1, 2.3, 2.4

Declare[name, options] can be used to change certain options

8 REFERENCE LIST 59

for previously-defined Ricci objects. Declare[{name1,name2,...},
options] changes options for several names at once; all names in the list
are given the same options. The first argument, name, must be the name of
a bundle, constant, index, tensor, or mathematical function that was previ-
ously defined by a call to DefineBundle, DefineConstant, DefineIndex,
DefineTensor, or DefineMathFunction. The allowable options depend
on what type of object is given as the first argument; the meanings of
the options are the same as in the corresponding Define command. Any
options not listed explicitly in the call to Declare are left unchanged.

• Constant: If name is a symbolic constant, only the Type op-
tion is allowed. It overrides any Type specification given when
DefineConstant was called.

• Index: If name is an index name, the only allowable option is
TeXFormat.

• Bundle: If name is a bundle name, the allowable op-
tions are FlatConnection, ParallelFrame, OrthonormalFrame,
PositiveDefinite, CommutingFrame, and TorsionFree.

• Tensor: If name is a tensor name, the allowable options are Type,
TeXFormat, and Bundle.

• Math function: If name is the name of a mathematical function, the
only allowable option is Type.

See also DefineBundle, DefineConstant, DefineIndex, DefineTensor,
DefineMathFunction.

DefineBundle 2.1, 7.1

DefineBundle[name, dim, metric, {indices}] defines a bundle.

• name: A symbol that uniquely identifies the bundle.

• dim: The dimension of the bundle. Can be a positive integer, a
symbolic constant, or any constant expression.

• metric: A name for the bundle’s metric. The metric is automatically
defined by DefineBundle as a Symmetric or Hermitian 2-tensor. It
is assumed to be compatible with the bundle’s default connection.

• {indices}: A list of index names to be associated with the bundle.
If only one index name is given, the braces may be omitted. For one-
dimensional bundles, only one index name is allowed. For higher-
dimensional bundles, additional indices can be added to the list at
any time by calling DefineIndex.

Options:

• Type -> Complex or Real. Default is Real. If Complex, the con-
jugate bundle is referred to as Conjugate[name], and is associated
with barred indices.

8 REFERENCE LIST 60

• TangentBundle -> bundle. Specifies the name of the underlying
tangent bundle for the bundle being defined. This can be a list of
bundles, representing the direct sum of the bundles in the list. The
default is the value of $DefaultTangentBundle if defined, otherwise
this bundle itself (or the direct sum of this bundle and its conjugate
if the bundle is complex). If $DefaultTangentBundle has not been
given a value the first time DefineBundle is called, it is set to the
first bundle defined (and its conjugate if it is a complex bundle).

• FlatConnection -> True or False. Truemeans the default connec-
tion on this bundle has curvature equal to 0. The default is False.

• ParallelFrame -> True or False. True means the default ba-
sis elements have vanishing covariant derivatives, so the connec-
tion and curvature forms are set equal to 0. This option forces
FlatConnection -> True. The default is False.

• OrthonormalFrame -> True or False. True means the metric co-
efficients with respect to the default basis are always assumed to
be constants. For one-dimensional bundles, the metric coefficient is
explicitly set to 1. The default is False.

• CommutingFrame -> True or False. This option is meaningful only
for tangent bundles or their subbundles. Truemeans the default basis
for this bundle consists of commuting vector fields (as is the case, for
example, when coordinate vector fields are used). This option causes
the connection coefficients for this bundle to be symmetric in their
two lower indices, and Lie brackets of basis vectors to be replaced by
zero.

• PositiveDefinite -> True or False. True means the bundle’s
metric is positive definite. Falsemeans no assumption is made about
the sign of the metric. This affects the simplification of complex pow-
ers and logarithms of inner products with respect to the metric. The
default is True.

• TorsionFree -> True or False. False means that the default con-
nection on this bundle may have nonvanishing torsion; this makes
sense only for tangent bundles or their subbundles. The default is
True.

• BasisName -> name. Specifies a name to be used in input, output,
and TEX forms for the default basis vectors for this bundle. The
default name is Basis. Basis vectors are always represented inter-
nally by the name Basis. Covariant basis vectors can be named
independently by the CoBasisName option.

• CoBasisName -> name. Specifies a name to be used in input, output,
and TEX forms for the default covariant basis vectors for this bundle.
The default is the name given in the BasisName option, or Basis if
BasisName is also omitted. Basis covectors are always represented
internally by the name Basis.

8 REFERENCE LIST 61

• MetricType -> Riemannian or Normal. The default is Normal,
which means that the bundle’s metric has no special properties.
If Riemannian is specified, this bundle is assumed to be a Rie-
mannian tangent bundle, and DefineBundle automatically defines
the Riemannian, Ricci, and scalar curvature tensors. Contrac-
tions of the Riemannian and Ricci curvatures are automatically
converted to Ricci and scalar curvatures, respectively. To ap-
ply other identities, use FirstBianchiRule, SecondBianchiRule,
ContractedBianchiRules, or BianchiRules.

When you specify MetricType -> Riemannian, you may also
give the RiemannTensor, RicciTensor, ScalarCurv, and
RiemannConvention options below.

• RiemannTensor -> name: a name to be given to the Riemannian cur-
vature tensor for this bundle. This tensor is automatically defined as
a real, covariant 4-tensor with Symmetries -> RiemannSymmetries.
This option takes effect only if MetricType -> Riemannian is spec-
ified. The default is Rm.

• RicciTensor -> name: a name to be given to the Ricci tensor for
this bundle. This tensor is automatically defined as a real, covariant,
symmetric 2-tensor. This option takes effect only if MetricType ->

Riemannian is specified. The default is Rc.

• ScalarCurv -> name: a name to be given to the scalar curvature
function for this bundle. This tensor is automatically defined as
a real 0-tensor. This option takes effect only if MetricType ->

Riemannian is specified. The default is Sc.

• RiemannConvention -> SecondUp or FirstUp: determines the sign
convention used for the Riemannian curvature tensor for this bun-
dle. This option takes effect only if MetricType -> Riemannian is
specified. The default is SecondUp, or the value of the global vari-
able $RiemannConvention if it has been set. The meaning of this
option is indicated by the relations below. (Note that the Riemann
curvature tensor is always defined as a covariant 4-tensor, so all four
of its indices are normally down. It is done this way so that all index
positions are equivalent for the purpose of applying symmetries of
the curvature tensor. The RiemannConvention option controls only
the sign of the curvature components.)

RiemannConvention -> FirstUp:

(∇X∇Y −∇Y ∇X −∇[X,Y])Z = X iY jZkg�mRmmkijBasis�

Rmk
ikj = Rcij

RiemannConvention -> SecondUp:

(∇X∇Y −∇Y ∇X −∇[X,Y])Z = X iY jZkg�mRmkmijBasis�

Rmi
k
kj = Rcij

8 REFERENCE LIST 62

• Quiet -> True or False. Default is False, or the value of $Quiet
if set.

See also DefineTensor, DefineIndex, UndefineBundle, Declare.

DefineConstant 2.3

DefineConstant[c] defines the symbol c to be a constant with respect
to differentiation in all space variables. The notation c[L[i]] is always
interpreted as a covariant derivative of c, and thus 0; and Conjugate[c]

is replaced by c if the constant is Real, and by -c if it is Imaginary.

Options:

• Type -> type. This can be a single keyword or a list of key-
words, chosen from among Complex, Real, Imaginary, Positive,
Negative, NonPositive, NonNegative, Integer, Odd, or Even. De-
termines how the constant behaves under conjugation, exponentia-
tion, and logarithms. Default is Real.

• Quiet -> True or False. Default is False, or the value of $Quiet
if set.

See also Conjugate, UndefineConstant, Declare.

DefineIndex 2.1, 2.2

DefineIndex[{i,j,k}, bundle] causes the index names i, j, k to be
associated with bundle.

• The first argument must be a symbol or list of symbols. One or more
of these may have already been defined as indices, as long as they
are associated with the same bundle as specified in this command.

• The second argument must be the name of a bundle.

Options:

• TeXFormat -> "texformat". Determines how the index appears in
TeXForm output. Default is the index name itself. This should be
specified only when one single index is being defined. Note that,
as in all Mathematica strings, backslashes must be typed as double
backslashes; thus to get an index name to appear as β in TEX output,
you would type TeXFormat -> "\\beta".

• Quiet -> True or False. Default is False, or the value of $Quiet
if set.

See also DefineBundle, UndefineIndex, UndefineBundle, Declare.

8 REFERENCE LIST 63

DefineMathFunction 2.5, 2.6

DefineMathFunction[f] declares f to be a scalar-valued function of one
real or complex variable that can be used in tensor expressions. If x is any
rank-0 tensor expression, then f[x] is also interpreted as a rank-0 tensor
expression. Ricci has built-in definitions for the Mathematica functions
Sin, Cos, Tan, Sec, Csc, Cot, and Log. If you intend to use any other
functions in tensor expressions, you must call DefineMathFunction.

Limitation: Currently, Ricci has no provision for using mathematical
functions depending on more than one variable in tensor expressions.

Options:

• Type -> type. This can be a single keyword or a list of key-
words, chosen from among Real, Complex, Imaginary, Automatic,
Positive, Negative, NonPositive, or NonNegative. Real means
f[x] is always real; Imaginary means f[x] is always imagi-
nary; Complex means f[x] can assume arbitrary complex val-
ues; and Automatic means Conjugate[f[x]] = f[Conjugate[x]].
Positive, Negative, NonPositive, and NonNegative all imply
Real, and mean that the function values always have the correspond-
ing attribute. Default is Real.

• Quiet -> True or False. Default is False, or the value of $Quiet
if set.

See also Declare.

DefineRelation 6.1

DefineRelation[tensor, x, condition] defines a relation of the
form

tensor := x /; condition

associated with the tensor’s name. The first argument tensor must be a
single tensor name with or without indices, and can be written in Ricci’s
input form. If index names used in tensor are associated with bundles,
then the relation is applied only when indices from those bundles appear
in those positions. The condition argument is optional; if present, it
should be a true/false condition that must be satisfied before the relation
will be applied. It may involve the tensor name or indices that appear in
tensor.

For example, if i is associated with bundle a and p with bundle b,

DefineRelation[t[L[i],L[p]], 0]

8 REFERENCE LIST 64

specifies that t[,] is to be replaced by 0 whenever its first index is
associated with a and its second with b. In general, the relation substitutes
x (suitably modified) in place of any expression that matches tensor after
insertion of indices, renaming of indices, covariant differentiation, conju-
gation, or raising or lowering of indices.

DefineRelation has the HoldAll attribute, so its arguments will not be
evaluated when the command is executed. This means you must write out
tensor, x, and condition in full, rather than referring to a variable name
or a preceding output line such as Out[10], so that DefineRelation can
properly process the indices that appear in the arguments.

Option:

• Quiet -> True or False. Default is False, or the value of $Quiet
if set.

See also DefineRule, UndefineRelation.

DefineRule 6.2

DefineRule[rulename, lhs, rhs, condition] defines a rule named
rulename of the form

lhs :> rhs /; condition

The first two arguments, lhs and rhs, are arbitrary tensor expressions
with or without indices; tensors in them can be written in Ricci’s input
form (tensor name, followed optionally by one or more sets of indices
in brackets). Other expressions used in lhs must match Mathematica’s
internal form for such expressions. The condition argument is optional;
if present, it should be a true/false condition that must be satisfied before
the relation will be applied. It may involve the tensor name or indices
that appear in lhs.

The rule is appended to a list containing previous rules defined with the
same name, unless the option NewRule -> True is specified. To delete a
rule entirely, make the assignment

rulename = .

If index names used in lhs are associated with bundles, then the rule is
applied only when indices from those bundles appear in those positions.
For example, if i is associated with bundle a and p with bundle b,

DefineRule[zerorule, t[L[i], L[p]], 0]

8 REFERENCE LIST 65

causes rule zerorule to replace t[,] by 0 whenever its first index is
associated with a and its second with b. In general, the rule substitutes
rhs (suitably modified) in place of any expression that matches lhs after
renaming of indices or raising or lowering of indices. If lhs is a single
tensor with or without indices, then the rule is also applied to expres-
sions that match lhs after insertion of indices, covariant differentiation,
or conjugation.

DefineRule has the HoldAll attribute, so its arguments will not be evalu-
ated when the command is executed. This means you must write out lhs,
rhs, and condition in full, rather than referring to a variable name or a
preceding output line such as Out[10], so that DefineRule can properly
process the indices that appear in the arguments.

Options:

• Quiet -> True or False. Default is False, or the value of $Quiet
if set.

• NewRule -> True or False. Default is False.

See also DefineRelation.

DefineTensor 2.4, 7.4

DefineTensor[name, rank] defines a tensor.

• name: A symbol that uniquely identifies the tensor.

• rank: Rank of the tensor. For ordinary tensors, this must be a
non-negative integer. For product tensors, this is a list of positive
integers.

Options:

• Symmetries -> sym: Symmetries of the tensor. For ordinary ten-
sors, the allowed values are Symmetric, Alternating or Skew,
Hermitian, SkewHermitian, RiemannSymmetries, NoSymmetries,
or the name of an arbitrary symmetry defined by calling
DefineTensorSymmetries. For a product tensor, the value of the
Symmetries option must be either NoSymmetries or a list of symme-
tries whose length is the same as that of the list of ranks; each symme-
try on the list can be Symmetric, Alternating or Skew, Hermitian,
SkewHermitian, or NoSymmetries, and applies to the corresponding
group of indices in the list of ranks. Default is NoSymmetries.

The values of the Symmetries option have the following meanings:

Symmetric: The tensor is fully symmetric in all indices.

Alternating: The tensor changes sign if any two indices are inter-
changed. Skew is a synonym for Alternating.

8 REFERENCE LIST 66

Hermitian: The tensor must be a real 2-tensor associated with a
bundle and its conjugate. It is symmetric in its two indices, with
the additional property that t[L[i],L[j]] and t[LB[i],LB[j]] are
both zero whenever i,j are associated with the same bundle. For
product tensors, this can be used only for a group of two indices.

SkewHermitian: The tensor must be a real 2-tensor associated with a
bundle and its conjugate. It is skew-symmetric in its two indices, with
the additional property that t[L[i],L[j]] and t[LB[i],LB[j]] are
both zero whenever i,j are associated with the same bundle. For
product tensors, this can be used only for a group of two indices.

RiemannSymmetries: The tensor must have rank 4. The symmetries
are those of the Riemann curvature tensor: skew-symmetric in the
first two indices, skew-symmetric in the last two indices, symmetric
when the first two and last two are interchanged. The (first) Bianchi
identity is not automatically applied, but can be explicitly applied to
any tensor with these symmetries by means of FirstBianchiRule or
BianchiRules.

• Type -> type. For rank-0 tensors, this can be a single keyword or
a list of keywords, chosen from among Complex, Real, Imaginary,
Positive, Negative, NonPositive, or NonNegative. For higher-
rank tensors, only Real, Complex, or Imaginary is allowed. De-
termines how the tensor behaves under conjugation, exponentiation,
and logarithms. The default is always Real.

• TeXFormat -> "texformat": Determines how the tensor appears in
TeXForm output. Default is the tensor’s name. Note that, as in
all Mathematica strings, backslashes must be typed as double back-
slashes; thus to get a tensor’s name to appear as β in TEX output,
you would type TeXFormat -> "\\beta".

• Bundle -> bundle: The bundle with which the tensor is associated.
This can be a list, meaning the tensor is associated with the direct
sum of all the bundles in the list. If a complex bundle is named and
the Type option is not Complex, the tensor is automatically associated
with the direct sum of the bundle and its conjugate.

Bundle -> Any indicates that the tensor can accept indices from any
bundle.

The default value for the Bundle option is $DefaultTangentBundle.

If the tensor is given an index associated with a bundle not in this
list, the result is 0.

For a product tensor, the Bundle option can be either a single bundle,
meaning that all index positions are associated with the same bundle,
or a list whose length is the same length as the list of ranks. Each
entry in the list specifies the bundle for the corresponding index slots.
Each entry can be either a single bundle name or a list of bundle
names indicating a direct sum of bundles for that group of slots.

8 REFERENCE LIST 67

Bundle -> Same is a special option for product tensors. It means
that indices from any bundle can be inserted in the first set of index
slots, but indices in the remaining slots must be from the same bundle
or its conjugate. This option is used internally by Ricci in defining
the Basis tensor.

Bundle -> Automatic is another special form that can be used for
product tensors. It means that indices from any bundle can be in-
serted in the first set of index slots, but indices in the remaining slots
must come from the underlying tangent bundle of the first indices.
This option is used internally by Ricci in defining the Conn, Tor, and
Curv tensors.

• Variance -> Covariant or Contravariant: Specifies whether the
tensor is covariant (so that components have lower indices) or con-
travariant (upper indices). This can be a list whose length is equal
to the total rank of the tensor, in which case each entry in the list
specifies the variance of the corresponding index slot. The default is
Covariant. Values may be abbreviated Co and Con.

• Quiet -> True or False: Default is False, or the value of $Quiet
if set.

See also UndefineTensor, Declare, Conjugate, DefineBundle,
FirstBianchiRule, BianchiRules, Conn, Tor, Curv, Basis,
DefineTensorSymmetries.

DefineTensorSymmetries

DefineTensorSymmetries[name, {perm1,sgn1,...,permN,sgnN}]

defines a TensorSymmetry object that can be used in DefineTensor.
Here perm1,...,permN must be lists that are nontrivial permutations
of {1,2,...,k}, and sgn1,...,sgnN must be constants (ordinarily
±1). A tensor with this symmetry has the property that, if any of the
permutations perm1,...,permN is applied to its indices, the value of the
tensor is multiplied by the corresponding constant sgn1,...,sgnN. Ricci
automatically tries all non-trivial iterates of each specified permutation,
until the indices are as close as possible to lexical order. (However, Ricci
does not try composing different permutations in the list.) See also
TensorSymmetry, DefineTensor, UndefineTensorSymmetries.

Del 4.1

Del[x] is the total covariant derivative of the tensor expression x. If x
is a k-tensor, then Del[x] is a (k + 1)-tensor. The last index slot of
Del[x] is the one generated by differentiation; it is always covariant, and
is associated with the underlying tangent bundle of the bundle(s) of x. If
x is a scalar function (0-tensor), then Del[x] is automatically replaced by
Extd[x].

8 REFERENCE LIST 68

Del[v,x] is the covariant derivative of x in the direction v; v must be a
1-tensor expression. In output form, Del[v,x] appears as:

Del [x]

v

Covariant derivatives with respect to (contravariant) basis vectors
are displayed without the name of the basis vector. For example,
Del[Basis[L[i]], x] appears as

Del [x]

i

Options:

• Connection -> cn specifies that the covariant derivative is to be
taken with respect to the connection cn instead of the default con-
nection. Ordinarily, cn should be an expression of the form Conn +

diff, where diff is a 3-tensor expression representing the “difference
tensor” between the default connection and cn.

• Metric -> g: a symmetric 2-tensor expression, indicating that the
covariant derivative is to be taken with respect to the Levi-Civita
connection of g instead of the default metric for x’s bundle (which is
assumed to be Riemannian).

See also Grad, CovD, Extd, Div, Laplacian, CovDExpand.

Det 7.3

If x is a 2-tensor expression, Ricci interprets Det[x] as the determinant of
x, using the metric to convert x to a {Contravariant,Covariant} tensor
if necessary.

Det is also a value for the global variable $WedgeConvention.

See also Dot, $WedgeConvention.

Dimension

Dimension[bundle] returns the dimension of bundle. See also
DefineBundle.

Div 4.3

Div[x] is the divergence of the tensor expression x, which is the covariant
derivative of x contracted on its last two indices. If x is a k-tensor, Div[x]
is a (k − 1)-tensor. Ricci assumes (without checking) that the last index
of x is associated with the underlying tangent bundle of x’s bundle. Div

is the formal adjoint of -Del.

Options:

8 REFERENCE LIST 69

• Connection -> cn specifies that the divergence is to be taken with
respect to the connection cn instead of the default connection. Ordi-
narily, cn should be an expression of the form Conn + diff, where
diff is a 3-tensor expression representing the “difference tensor” be-
tween the default connection and cn.

• Metric -> g: a symmetric 2-tensor expression, indicating that the
divergence is to be taken with respect to the Levi-Civita connection
of g instead of the default metric for x’s bundle (which is assumed to
be Riemannian).

See also Del, Laplacian.

DivGrad 4.5

DivGrad is a value for the global variable $LaplacianConvention.

Dot 3.4, 7.3

When x and y are tensor expressions, x.y or Dot[x,y] represents the con-
traction of the last index of x with the first index of y. When x and y are
2-tensors, this can be interpreted as matrix multiplication. If Dot is ap-
plied to three or more tensor expressions, all arguments except possibly the
first and last must have rank greater than 1. Ricci automatically expands
dot products of sums and scalar multiples, and replaces dot products of
1-tensors with inner products. See also Inner, Inverse, Kronecker.

ERROR

If you attempt to insert the wrong number of indices into a tensor expres-
sion, Ricci returns ERROR[expression].

Even 2.3

Even is a value for the Type option of DefineConstant.

Expand 5.3

If you apply the Mathematica function Expand to an expression
that includes tensors with indices, Ricci automatically converts it to
TensorExpand. See also TensorExpand.

Extd 4.6

Extd[x] is the exterior derivative of x, which must be an alternating
covariant tensor expression. In output form, Extd[x] appears as d[x].
Ricci automatically expands exterior derivatives of sums, scalar multiples,
powers, and wedge products. See also Del, ExtdStar, LaplaceBeltrami.

ExtdStar 4.7

ExtdStar[x] is the adjoint of the operator Extd applied to x, which must
be an alternating covariant tensor expression. If x is a k-form, then

8 REFERENCE LIST 70

ExtdStar[x] is a (k − 1)-form. In output form, ExtdStar[x] appears
as shown here:

In[26]:= ExtdStar[x]

*

Out[26]= d [x]

Option:

• Metric -> g: a symmetric 2-tensor expression, representing a metric
to be used in place of the default metric for x’s bundle (which is
assumed to be Riemannian).

See also Extd, LaplaceBeltrami, Div.

FactorConstants 5.8

FactorConstants[x] applies the Mathematica function Factor to
the constant factor in each term of the tensor expression x.
FactorConstants[x,n] or FactorConstants[x,{n1,n2,...}] applies
FactorConstants only to term n or to terms n1,n2,... of x.
See also CollectConstants, SimplifyConstants, ConstantFactor,
TensorFactor.

FirstBianchiRule 7.2

FirstBianchiRule is a rule that attempts to turn sums containing two
4-tensors with Symmetries -> RiemannSymmetries into a single term,
using the first Bianchi identity. For example:

i i

Out[7]= 2 Rm + 2 Rm

j k l l j k

In[8]:= % /. FirstBianchiRule

i

Out[8]= 2 Rm

k j l

See also SecondBianchiRule, BianchiRules, ContractedBianchiRules.

FirstStructureRule 7.5

FirstStructureRule is a rule that implements the first structure equa-
tion for exterior derivatives of basis covectors. For example (assuming
$WedgeConvention = Alt):

8 REFERENCE LIST 71

i

Out[9]= d[Basis]

In[10]:= % /. FirstStructureRule

k6 i 1 i

Out[10]= Basis ^ Conn + - Tor

k6 2

See also SecondStructureRule, CompatibilityRule, StructureRules,
$WedgeConvention.

FirstUp

FirstUp is a value for the RiemannConvention option of DefineBundle.

FlatConnection 2.1

FlatConnection is a DefineBundle option.

The function FlatConnection[bundle] returns True or False.

See also DefineBundle.

FormQ

FormQ[x] returns True if x is a covariant alternating tensor expression,
and False otherwise. See also DefineTensor.

Grad 4.4

Grad[x] is the gradient of the tensor expression x. It is the same as
Del[x], except that the last index is contravariant instead of covariant. If
x is a scalar function (0-tensor), then Grad[x] is a vector field. See also
Del, Laplacian.

Hermitian 2.1

Hermitian is a value for the Symmetries option of DefineTensor.

HodgeInner 3.6

HodgeInner[x,y] represents the Hodge inner product of the alternat-
ing tensors x and y, taken with respect to the default metric(s) on
the bundle(s) with which x and y are associated. It is equal to the
usual inner product multiplied by a numerical scale factor (depending
on $WedgeConvention) chosen so that, if {ei} are orthonormal 1-forms,
then the following k-forms are orthonormal:

ei1 ∧ . . . ∧ eik , i1 < . . . < ik.

8 REFERENCE LIST 72

The arguments x and y must be alternating tensor expressions of the same
rank. In output form, HodgeInner[x,y] appears as <<x, y>>. See also
Inner, HodgeNorm, Int, ExtdStar.

HodgeNorm

HodgeNorm[x] is the norm of the alternating tensor expression x, with
respect to the Hodge inner product. It is automatically converted by Ricci
to Sqrt[HodgeInner[x,Conjugate[x]]]. See also HodgeInner, Norm.

Im 2.6

Ricci converts Im[x] to (x - Conjugate[x])/(2I). See also Conjugate.

Imaginary 2.3, 2.4

Imaginary is a value for the Type option of DefineConstant,
DefineTensor, and DefineMathFunction.

IndexOrderedQ 6.1

IndexOrderedQ[{indices}] returns True if {indices} are ordered cor-
rectly according to Ricci’s index ordering rules—first by name, then by
altitude (lower before upper)—and False otherwise. See also OrderDummy,
OrderCovD, DefineRelation, DefineRule.

IndexQ

IndexQ[i] returns True if i is an index name, and False otherwise. See
also DefineBundle, DefineIndex.

Inner 3.5

If x and y are tensor expressions, Ricci interprets Inner[x,y] as the inner
product of x and y, taken with respect to the default metric(s) on the bun-
dle(s) with which x and y are associated. If x and y have opposite variance
(for example, if x is a 1-form and y is a vector field), then Inner[x,y]

represents the natural pairing between x and y. The arguments x and
y must have the same rank. Ricci automatically expands inner products
of sums and scalar multiples. In output form, Inner[x,y] appears as
<x, y>. See also Norm, HodgeInner.

InsertIndices 2.6

If x is a tensor expression of rank k, then InsertIndices[x,

{L[i1],...,L[ik]}] causes the indices L[i1], . . . , L[ik] to be inserted
into the k index slots in order, yielding a component expression. In input
form, this can be abbreviated x[L[i1], ..., L[ik]]. Indices in each
slot may be lower (L[i]) or upper (U[i]).

If x has rank 0, then InsertIndices[x, {}] or x[] converts it to a
component expression by generating dummy indices as necessary.

8 REFERENCE LIST 73

If one or more indices are inserted into a rank-0 expression, then
InsertIndices is automatically converted to CovD. See also CovD.

Int 3.7

If x and y are alternating tensor expressions with Rank[x] ≤ Rank[y],
Int[x,y] represents the generalized interior product of x into y. When
x is a vector field, Int[x,y] is interior multiplication of x into y (with a
numerical factor depending on $WedgeConvention). In general, Int[x,]

is the adjoint (with respect to the Hodge inner product) of wedging with
x on the left: if alpha, beta, and gamma are alternating tensors of ranks
a, b, a+ b, respectively, then

<<alpha ^ beta, gamma>> = <<beta, Int [gamma]>>.

alpha

See also HodgeInner, Wedge, Dot, $WedgeConvention.

Integer 2.3

Ricci recognizes Integer as a value for the Type option of
DefineConstant.

Inverse 7.3

If x is a 2-tensor expression, Ricci interprets Inverse[x] as the matrix
inverse of x. See also Dot, Kronecker.

Kronecker 7.3

Kronecker[L[i],U[j]] is the Kronecker delta symbol, which is equal to
1 if i = j and 0 otherwise. Kronecker is a generic tensor representing
the identity endomorphism of any bundle. See also Dot, Inverse.

L 2.2, 2.4

L[i] represents a lower index i. L[i[Bar]] is the internal representation
for a lower barred index i; it can be abbreviated in input form by LB[i].
See also LB, U, UB.

LaplaceBeltrami 4.8

LaplaceBeltrami[x] is the Laplace-Beltrami operator Δ = dd∗ + d∗d
applied to the differential form x. It is automatically replaced by
Extd[ExtdStar[x]] + ExtdStar[Extd[x]].

Option:

• Metric -> g: a symmetric 2-tensor expression, representing a metric
to be used in place of the default metric for x’s bundle (which is
assumed to be Riemannian).

See also Extd, ExtdStar, Laplacian.

8 REFERENCE LIST 74

Laplacian 4.5

Laplacian[x] is the covariant Laplacian of the tensor expression x.
The sign convention of Laplacian is controlled by the global vari-
able $LaplacianConvention. When $LaplacianConvention = DivGrad

(the default), Laplacian[x] is automatically replaced by Div[Grad[x]].
When $LaplacianConvention = PositiveSpectrum, Laplacian[x] is
replaced by -Div[Grad[x]].

Options:

• Metric -> g: a symmetric 2-tensor expression, representing a metric
to be used in place of the default metric for the underlying tangent
bundle of x.

• Connection -> cn specifies that covariant derivatives are to be
taken with respect to the connection cn instead of the default con-
nection. Ordinarily, cn should be an expression of the form Conn +

diff, where diff is a 3-tensor expression representing the “difference
tensor” between the default connection and cn.

See also Div, Grad, LaplaceBeltrami.

LB 2.2, 2.4

LB[i] is the input form for a lower barred index i. It is converted auto-
matically to the internal form L[i[Bar]]. See also L, U, UB, Bar.

LeviCivitaConnection 7.6

LeviCivitaConnection[g] represents the Levi-Civita connection of the
arbitrary Riemannian metric g. It behaves as a product tensor of rank
{2,1}. When indices are inserted, the connection coefficients (Christof-
fel symbols) are computed in terms of the background connection of g’s
bundle (assumed to be Riemannian) and covariant derivatives of g. The
upper index is the second one, just as for the default connection Conn. See
also Conn, Curvature, RiemannTensor, RicciTensor, ScalarCurv.

Lie 4.9

Lie[v,x] is the Lie derivative of the tensor expression x in the direction v.
The first argument v must be a vector field (a contravariant 1-tensor ex-
pression). If v and x are both vector fields, Lie[v,x] is their Lie bracket,
and Ricci automatically puts the factors in lexical order by inserting a
minus sign if necessary. Applying LieRule causes Lie derivatives of differ-
ential forms to be expanded in terms of Int and exterior derivatives. See
also Del, LieRule.

LieRule 4.9

LieRule is a rule that transforms Lie derivatives of differential forms to
expressions involving exterior derivatives and Int according to the relation

8 REFERENCE LIST 75

Lie [w] --> Int [d[w]] + d[Int[[w]]]

v v v

See also Lie, Int, Extd.

LowerAllIndices 5.20

LowerAllIndices[x] lowers all of the indices in x (except those appearing
on metrics or Basis covectors) by inserting appropriate metrics with raised
indices. LowerAllIndices[x,n] or LowerAllIndices[x,{n1,n2,...}]
applies LowerAllIndices to term n or to terms n1,n2,... of x. See also
CorrectAllVariances.

Method

Method is an option for the Ricci simplification command OrderDummy,
which specifies how hard the command should work to simplify the ex-
pression.

Metric

Metric -> metricname is an option for Del, Div, Grad, ExtdStar, CovD,
Laplacian, and LaplaceBeltrami.

The function Metric[bundle] returns the bundle’s metric.

See also DefineBundle.

MetricQ

MetricQ[x] returns True if x is a metric with or without indices, and
False otherwise. See also DefineBundle.

MetricType 7.2

MetricType is a DefineBundle option, which specifies whether the bun-
dle’s metric has special properties. Currently the only allowable values
are MetricType -> Normal (no special properties), and MetricType ->

Riemannian (for a Riemannian tangent bundle). The default is Normal.

Negative 2.3, 2.4, 2.6

Ricci recognizes Negative as a value for the Type option of
DefineConstant, DefineTensor, and DefineMathFunction.

NewDummy 5.16

NewDummy[x] converts all dummy indices occurring in the tensor ex-
pression x to computer-generated dummy indices. NewDummy[x,n] or
NewDummy[x,{n1,n2,...}] applies NewDummy to term n or to terms
n1,n2,... of x. For most bundles, the generated dummy names are

8 REFERENCE LIST 76

of the form kn, where k is the last index name associated with bundle and
n is an integer. For one-dimensional bundles, only the dummy name k

itself is generated. See also RenameDummy, OrderDummy.

NewRule 6.2

NewRule is a DefineRule option.

NonNegative 2.3, 2.4, 2.6

Ricci recognizes NonNegative as a value for the Type option of
DefineConstant, DefineTensor, and DefineMathFunction.

NonPositive 2.3, 2.4, 2.6

NonPositive is a value for the Type option of DefineConstant,
DefineTensor, and DefineMathFunction.

NoOneDims

NoOneDims is a value for the Mode option of AbsorbMetrics, used inter-
nally by TensorSimplify.

Norm

Norm[x] is the norm of the tensor expression x. It is automatically
converted by Ricci to Sqrt[Inner[x,Conjugate[x]]]. See also Inner,
HodgeNorm.

Normal 7.2

Normal is a value for the MetricType option of DefineBundle.

NoSymmetries 2.4

NoSymmetries is a value for the Symmetries option of DefineTensor.

Odd [47 2.3

Odd is a value for the Type option of DefineConstant.

OneDims

OneDims is a value for the Mode option of CorrectAllVariances, used
internally by TensorSimplify.

OrderCovD 5.18

OrderCovD[x] puts all of the indices appearing after “;” in the tensor
expression x in order according to Ricci’s index-ordering rules (first al-
phabetically by name, then by altitude), by adding appropriate curvature
and torsion terms. OrderCovD[x,n] or OrderCovD[x,{n1,n2,...}] ap-
plies OrderCovD only to term n or to terms n1,n2,... of x. See also
CommuteCovD, CovDSimplify, IndexOrderedQ.

8 REFERENCE LIST 77

OrderDummy 5.6

OrderDummy[x] attempts to put the dummy indices occurring in the
tensor expression x in a “canonical form”. OrderDummy[x,n] or
OrderDummy[x,{n1,n2,...}] applies OrderDummy to term n or to terms
n1,n2,... of x. All pairs of dummy indices are ordered so that the lower
member appears first whenever possible. Then OrderDummy tries various
permutations of the dummy index names in each term of x, searching
for the lexically smallest version of the expression among all equivalent
versions.

Option:

• Method -> n specifies how hard OrderDummy should work to find the
best possible version of the expression. The allowable values are 0,
1, and 2. The default is Method -> 1, which means that dummy
index names are interchanged in pairs until the lexically smallest
version of the expression is found; this is used by TensorSimplify.
Method -> 2 causes OrderDummy to try all possible permutations of
the dummy index names; this is used by SuperSimplify. Method

-> 0 means don’t try interchanging names at all. If n is the number
of dummy index pairs in the expression, the time taken by Method

-> 1 is proportional to n2, while the time taken by Method -> 2 is
proportional to n!. This can be very slow, especially if there are more
than 4 dummy pairs per term.

See also TensorSimplify, SuperSimplify, RenameDummy, NewDummy.

ParallelFrame 2.1

ParallelFrame is a DefineBundle option.

Plus 2.6

Ricci transforms expressions of the form (a + b)[L[i],...] into
InsertIndices[a+b, {L[i],...}]. Any number of upper and/or
lower indices can be inserted in this way, provided that the number of
indices is consistent with the rank of a+b.

Positive 2.3, 2.4, 2.6

Ricci recognizes Positive as a value for the Type option of
DefineConstant, DefineTensor, and DefineMathFunction.

PositiveDefinite 2.1

PositiveDefinite is a DefineBundle option.

PositiveSpectrum 4.5

PositiveSpectrum is a value for the global variable
$LaplacianConvention.

8 REFERENCE LIST 78

Power 2.6

If x is a tensor expression and p is a positive integer, Ricci interprets x^p
as the p-th symmetric power of x with itself. Ricci transforms expressions
of the form (x^p)[i] into InsertIndices[x^p,{i}] whenever i is an
index (L[j] or U[j]).

Ricci causes a power of a product such as (a b)^p to be expanded
into a product of powers a^p * b^p, provided a and b do not con-
tain any indices; if they do contain indices, then (a b)^p is trans-
formed to Summation[a b]^p, to prevent the expression from being ex-
panded to a^p b^p. Summation is not printed in output form. See also
SymmetricProduct, Summation, PowerSimplify, ProductExpand.

PowerSimplify 5.14

PowerSimplify[x] attempts to simplify powers that appear in the tensor
expression x. PowerSimplify[x,n] or PowerSimplify[x,{n1,n2,...}]
applies PowerSimplify only to term n or to terms n1,n2,... of x.
PowerSimplify transforms x by

• Converting products like a^p b^p to Summation[a b]^p when a

and b contain indices. Summation is an internal Ricci function
that prevents such products from being automatically expanded
by Mathematica. It does not appear in output form; instead,
Summation[a b]^p prints as (a b)^p.

• Expanding powers like (a^b)^c to a^(b c), provided it knows
enough about a, b, and c to know this is legitimate (for example,
if c is an integer, or if a is positive and b is real).

• Expanding and collecting constants in any expression that appears
as base or exponent of a power.

See also TensorSimplify, Power, Summation.

ProductExpand 5.13

ProductExpand[x] expands symmetric products and wedge products of
1-tensors that occur in x, and rewrites them in terms of tensor prod-
ucts. ProductExpand[x,n] or ProductExpand[x,{n1,n2,...}] applies
ProductExpand only to term n or to terms n1,n2,... of x. See also
BasisExpand, Sym, Alt, SymmetricProduct, Wedge.

Quiet

Quiet is an option for some of the defining and undefining commands in
the Ricci package. The option Quiet -> True silences the usual messages
printed by these commands. The default is the value of the global variable
$Quiet, which is initially False.

8 REFERENCE LIST 79

Rank

Rank[x] returns the rank of the tensor expression x. If t is a tensor
without indices, Rank[t] is the total rank as specified in the call to
DefineTensor. If t is a tensor with all index slots filled, Rank[t] = 0. If t
is a product tensor with some, but not all, index slots filled, then Rank[t]

is the total rank of t minus the number of filled slots. For any other tensor
expression x, Rank[x] depends on the meaning of the expression. See also
DefineTensor.

Re 2.6

Ricci converts Re[x] to (x + Conjugate[x])/2. See also Conjugate.

Real 2.1, 2.3, 2.4, 2.6

Ricci recognizes Real as a value for the Type option of DefineBundle,
DefineConstant, DefineTensor, and DefineMathFunction.

RenameDummy 5.5

RenameDummy[x] changes the names of dummy indices in x to standard
names. RenameDummy[x,n] or RenameDummy[x, {n1,n2,...}] applies
RenameDummy only to term n or to terms n1,n2,... of x. RenameDummy

chooses dummy names in alphabetical order from the list of index names
associated with the appropriate bundle, skipping those names that already
appear in x as free indices. When the list of index names is exhausted,
computer-generated names of the form kn are used, where k is the last
index name in the list and n is an integer. For one-dimensional bundles,
n is omitted. See also TensorSimplify, OrderDummy, NewDummy.

RicciSave 2.7

RicciSave["filename"] causes the definitions of all symbols defined in
Mathematica’s current context, along with Ricci’s predefined tensors and
global variables, to be saved in Mathematica input form into the file
filename. (The current context is usually Global‘, and usually includes
all symbols you have used in the current session.) The previous contents
of filename are erased. You can read the definitions back in by typing
<<filename.

RicciTensor 7.6

RicciTensor -> name is a DefineBundle option, which specifies a name
to be used for the Ricci tensor for this bundle. The default is Rc. This
option takes effect only when MetricType -> Riemannian has been spec-
ified.

RicciTensor[g] represents the Ricci curvature tensor of the arbitrary
metric g. When indices are inserted, the components of the Ricci tensor
are computed in terms of covariant derivatives of g and the curvature of

8 REFERENCE LIST 80

the default metric on g’s bundle, which is assumed to be Riemannian.
Note: If you insert any upper indices, they are considered to have been
raised by the default metric on g’s bundle, not by g. To use g to raise
indices, you must explicitly multiply by components of Inverse[g].

See also DefineBundle, RiemannTensor, ScalarCurv,
LeviCivitaConnection.

RiemannConvention 7.2

RiemannConvention is a DefineBundle option, which specifies the index
convention of the Riemannian curvature tensor.

Riemannian 7.2

MetricType -> Riemannian is a DefineBundle option for defining a Rie-
mannian tangent bundle.

RiemannSymmetries

RiemannSymmetries is a value for the Symmetries option of
DefineTensor.

RiemannTensor 7.6

RiemannTensor -> name is a DefineBundle option, which specifies a
name to be used for the Riemannian curvature tensor for this bundle.
The default is Rm. This option takes effect only when MetricType ->

Riemannian has been specified.

RiemannTensor[g] represents the Riemannian curvature tensor of the
arbitrary metric g. Like the default Riemannian curvature tensor,
RiemannTensor[g] is a covariant 4-tensor. When indices are inserted,
the components of the curvature tensor are computed in terms of covari-
ant derivatives of g and the curvature of the default metric on g’s bundle,
which is assumed to be Riemannian. Note: If you insert any upper in-
dices, they are considered to have been raised by the default metric on g’s
bundle, not by g. To use g to raise indices, you must explicitly multiply
by components of Inverse[g].

See also DefineBundle, LeviCivitaConnection, RicciTensor,
ScalarCurv.

Same

Bundle -> Same is a special DefineTensor option for product tensors.

ScalarCurv 7.6

ScalarCurv -> name is a DefineBundle option, which specifies a name
to be used for the scalar curvature for this bundle. The default is Sc.
This option takes effect only when MetricType -> Riemannian has been
specified.

8 REFERENCE LIST 81

ScalarCurv[g] represents the scalar curvature of the arbitrary metric g.
When indices are inserted, the scalar curvature is computed in terms of
covariant derivatives of g and the curvature of the default metric on g’s
bundle, which is assumed to be Riemannian.

See also RiemannTensor, RicciTensor, LeviCivitaConnection,
DefineBundle.

ScalarQ

ScalarQ[x] is True if x is a rank 0 tensor expression with no free indices,
and False otherwise.

SecondBianchiRule 7.2

SecondBianchiRule is a rule that attempts to turn sums containing two
differentiated Riemannian curvature tensors into a single term using the
second Bianchi identity. For example:

2 Rm + 2 Rm /. SecondBianchiRule

i j k l; m i j l m; k

--> -2 Rm

i j m k; l

See also FirstBianchiRule, ContractedBianchiRules, BianchiRules,
DefineBundle.

SecondStructureRule 7.5

SecondStructureRule is a rule that implements the second structure
equation for exterior derivatives of the generic connection forms. For ex-
ample:

Extd[Conn[L[i],U[j]]] /. SecondStructureRule -->

1 j k j

- Curv + Conn ^ Conn

2 i i k

See also FirstStructureRule, CompatibilityRule, StructureRules,
Curv, Conn, CurvToConnRule.

SecondUp 7.2

SecondUp is a value for the RiemannConvention option of DefineBundle.

SimplifyConstants 5.9

SimplifyConstants[x] applies the Mathematica function Simplify

to the constant factor in each term of the tensor expression x.

8 REFERENCE LIST 82

SimplifyConstants[x,n] or SimplifyConstants[x,{n1,n2,...}] ap-
plies SimplifyConstants only to term n or terms n1,n2,... of x. See
also CollectConstants, FactorConstants, ConstantFactor.

Skew 2.4

Skew is a synonym for Alternating.

SkewHermitian

SkewHermitian is a value for the Symmetries option of DefineTensor.

SkewQ

SkewQ[x] is True if x is an alternating or skew-Hermitian tensor expres-
sion, and False otherwise.

StructureRules 7.5

StructureRules is the union of CompatibilityRule,
FirstStructureRule, and SecondStructureRule.

Summation

If a and b contain indices, then Ricci transforms (a b)^p internally
to Summation[a b]^p, to prevent the expression from being expanded
to a^p * b^p. Summation is not printed in output form; instead,
Summation[a b]^p appears as if it were (a b)^p. See also Power,
PowerSimplify.

SuperSimplify 5.1, 5.2

SuperSimplify[x] attempts to put the tensor expression x into a
canonical form, so that two expressions that are equal are usu-
ally identical after applying SuperSimplify. SuperSimplify[x,n] or
SuperSimplify[x,{n1,n2,...}] applies SuperSimplify only to term
n or to terms n1, n2, . . . of x. SuperSimplify works exactly the same
way as TensorSimplify, except that it calls OrderDummy with the option
Method -> 2, so that all possible permutations of dummy index names are
tried. This is generally much slower for expressions having more than 4
dummy index pairs: for an expression with k dummy index pairs per term,
the time taken by TensorSimplify is proportional to k2, while the time
taken by SuperSimplify is proportional to k!. See also TensorSimplify,
OrderDummy, TensorCancel.

Sym 3.9

Sym[x] represents the symmetrization of the tensor expression x. If x is
symmetric, then Sym[x] = x. See also Alt, SymmetricProduct.

Symmetric 2.4

Symmetric is a value for the Symmetries option of DefineTensor.

8 REFERENCE LIST 83

SymmetricProduct 3.3

If x, y, and z are tensor expressions, SymmetricProduct[x,y,z] or
x * y * z or x y z represents their symmetric product. Symmetric prod-
ucts are represented internally by ordinary multiplication. In output form,
Ricci inserts explicit asterisks whenever non-scalar tensor expression are
multiplied together, to remind the user that multiplication is being inter-
preted as symmetric product. Mathematically, the symmetric product is
defined by a∗b = Sym(a⊗b). See also Times, Power, Sym, ProductExpand.

SymmetricQ

SymmetricQ[x] is True if x is a symmetric or Hermitian tensor expression,
and False otherwise.

Symmetries 2.4

Symmetries is a DefineTensor option.

TangentBundle 2.1

TangentBundle is a DefineBundle option.

The function TangentBundle[x] returns the tangent bundle list for the
bundle x. See also UnderlyingTangentBundle.

Tensor 2.4

Ricci’s internal form for tensors is

Tensor[name, {i,j,...}, {k,l,...}]

where name is the tensor’s name, i,j,... are the tensor indices (each of
the form L[i] or U[i]), and k,l,... are the indices resulting from co-
variant differentiation. In input form, this can be typed name [i,j,...]

[k,l,...]. Either set of indices in brackets can be omitted if it is empty.
See also DefineTensor, UndefineTensor.

TensorCancel 5.21

TensorCancel[x] attempts to simplify each term of x by combin-
ing and cancelling common factors, even when the factors have
different names for their dummy indices. TensorCancel[x,n] or
TensorCancel[x,{n1,n2,...}] applies TensorCancel only to term n or
to terms n1,n2,... of x. See also TensorSimplify, SuperSimplify.

TensorData

TensorData[name] is a list containing data for the tensor name, used
internally by Ricci. See also DefineTensor.

8 REFERENCE LIST 84

TensorExpand 5.3

TensorExpand[x] expands products and positive integral powers in
x, just as Expand does, but maintains correct dummy index conven-
tions and does not expand constant factors. TensorExpand[x,n] or
TensorExpand[x,{n1,n2,...}] applies TensorExpand to term n or to
terms n1,n2,... of x. If you apply the Mathematica function Expand to
an expression containing tensors with indices, it is automatically converted
to TensorExpand. See also TensorSimplify, Expand, BasisExpand,
CovDExpand, ProductExpand.

TensorFactor

TensorFactor[x] returns the product of all the non-constant factors in
x, which should be a monomial. See also ConstantFactor.

TensorMetricQ

TensorMetricQ[tensorname] returns True if tensorname is the metric of
some bundle, and False otherwise. See also DefineBundle.

TensorProduct 3.1

TensorProduct[x,y,z] or TProd[x,y,z] represents the tensor product
of x, y, and z. Ricci automatically expands tensor products of sums and
scalar multiples. In output form, tensor products appear as

x (X) y (X) z

See also SymmetricProduct, Wedge.

TensorQ

TensorQ[name] returns True if name is the name of a tensor, and False

otherwise. See also DefineTensor.

TensorRankList

TensorRankList stores the list of ranks for a product tensor. Used inter-
nally by Ricci. See also DefineTensor.

TensorSimplify 5.1

TensorSimplify[x] attempts to put the tensor expression x into a
canonical form, so that two expressions that are equal will usually
be identical after applying TensorSimplify. TensorSimplify[x,n] or
TensorSimplify[x,{n1,n2,...}] applies TensorSimplify to term n or
to terms n1,n2,... of x.

TensorSimplify expands products and positive integer powers, sim-
plifies powers, uses metrics to raise and lower indices, tries to re-
name all dummy indices in a canonical order, and collects all terms

8 REFERENCE LIST 85

containing the same tensor factors but different constant factors.
When there are two or more dummy index pairs associated with the
same bundle, TensorSimplify tries exchanging dummy index names
in pairwise, choosing the lexically smallest result. It does not re-
order indices after the “;” (use OrderCovD or CovDSimplify to do
that). TensorSimplify calls CorrectAllVariances, TensorExpand,
AbsorbMetrics, PowerSimplify, RenameDummy, OrderDummy, and
CollectConstants. See also SuperSimplify, OrderCovD, CovDSimplify,
TensorCancel, FactorConstants, SimplifyConstants.

TensorSymmetry

A tensor symmetry is an object of the form

TensorSymmetry[name,d,{perm1,sgn1,...,permN,sgnN}],

where d is a positive integer, perm1,...,permN are non-trivial
permutations of {1, 2, . . . , d}, and sgn1,...,sgnN are constants,
usually ±1. TensorSymmetry objects can be defined with
DefineTensorSymmetries and used in the DefineTensor command. See
also DefineTensorSymmetries, DefineTensor.

TeXFormat

TeXFormat is an option for DefineTensor and DefineIndex.

Times 2.6, 3.3

Ricci uses ordinary multiplication to represent symmetric products of
tensors. Ricci transforms expressions of the form (a * b)[L[i],...]

into InsertIndices[a*b, {L[i],...}]. Any number of upper and/or
lower indices can be inserted in this way, provided that the number of
indices is consistent with the rank of a*b. In output form, Ricci modifies
Mathematica’s usual ordering of factors: constants are printed first, then
scalars, then higher-rank tensor expressions, and Ricci inserts explicit as-
terisks between tensor factors of rank greater than 0 to remind the user
that multiplication is being interpreted as symmetric product. See also
SymmetricProduct, Power, ProductExpand.

Tor 7.5

Tor is the name for the generic torsion tensor for the default connection in
any bundle. It is a product tensor of rank {1,2}; inserting the first index
yields the torsion 2-forms associated with the default basis. Inserting all
three indices yields the components of the torsion tensor.

TorsionFree 2.1, 7.5

TorsionFree is a DefineBundle option.

The function TorsionFree[bundle] returns True or False.

8 REFERENCE LIST 86

See also DefineBundle.

TotalRank

TotalRank[tensorname] returns the total rank of the tensor tensorname.
This function is used internally by Ricci. To compute the rank of an arbi-
trary tensor expression, use Rank instead. See also Rank, DefineTensor.

TProd 3.1

TProd is an abbreviation for TensorProduct.

Tr 7.3

Tr[x] represents the trace of the 2-tensor expression x, computed with
respect to the default metric on x’s bundle. See also Dot.

Transpose 7.3

If x is a tensor expression, Ricci interprets Transpose[x] as x with its
index positions reversed. See also Dot.

Type 2.1, 2.3, 2.4, 2.6

Type is an option for DefineBundle, DefineConstant, DefineTensor,
and DefineMathFunction.

U 2.2, 2.4

U[i] represents an upper index i. U[i[Bar]] is the internal representation
for an upper barred index i; it can be abbreviated in input form by UB[i].
See also UB, L, LB.

UB 2.2, 2.4

UB[i] is the input form for an upper barred index i. It is converted
automatically to the internal form U[i[Bar]]. See also U, L, LB, Bar.

UndefineBundle 2.1

UndefineBundle[bundle] clears the definition of bundle, its metric, and
all its indices. If bundle is a Riemannian tangent bundle, it also clears
the definitions of its Riemann, Ricci, and scalar curvature tensors. If you
try to perform computations with previous expressions involving bundle’s
indices, you may get unpredictable results.

Option:

• Quiet -> True or False. Default is False, or the value of $Quiet
if set.

See also DefineBundle, UndefineIndex, Declare.

8 REFERENCE LIST 87

UndefineConstant

UndefineConstant[c] removes c’s definition as a constant.

Option:

• Quiet -> True or False. Default is False, or the value of $Quiet
if set.

See also DefineConstant, Declare.

UndefineIndex

UndefineIndex[i] or UndefineIndex[{i,j,k}] removes the association
of indices with their bundles. If you try to perform computations with
previous expressions involving these indices, you may get unpredictable
results.

Option:

• Quiet -> True or False. Default is False, or the value of $Quiet
if set.

See also DefineIndex, DefineBundle, UndefineBundle, Declare.

UndefineRelation 6.1

UndefineRelation[tensor] deletes the relation previously defined for
tensor. The argument must exactly match the first argument of the
corresponding call to DefineRelation. Note: There is no UndefineRule
function; to remove the definition of a rule defined by DefineRule, simply
execute an assignment such as rulename =., or call DefineRule with the
option NewRule -> True.

Option:

• Quiet -> True or False. Default is False, or the value of $Quiet
if set.

See also DefineRelation.

UndefineTensor

UndefineTensor[tensorname] clears the definition of tensorname. If
you try to perform computations with previous expressions involving
tensorname, you may get unpredictable results.

Option:

• Quiet -> True or False. Default is False, or the value of $Quiet
if set.

See also DefineTensor, Declare.

8 REFERENCE LIST 88

UndefineTensorSymmetries

UndefineTensorSymmetries[name] deletes the TensorSymmetry object
created by DefineTensorSymmetries[name,...].

UnderlyingTangentBundle

UnderlyingTangentBundle[x] returns a list of bundles representing the
underlying tangent bundle of the expression. The tangent bundle is the
direct sum of the bundles in the list. It is assumed that all tensors used
in a given expression have the same underlying tangent bundle.

Variance 2.4

Variance is a DefineTensor option.

The function Variance[x] returns a list of variances of the tensor expres-
sion x, one for each index slot.

See also DefineTensor, Bundles.

VectorFieldQ

VectorFieldQ[x] returns True if x is a contravariant 1-tensor expression,
and False otherwise.

Wedge 3.2

Wedge[x,y,z] represents the wedge or exterior product of x, y, and z.
The arguments of Wedge must be alternating tensor expressions. They
need not be covariant tensors, however; Ricci handles wedge products of
covariant, contravariant, and mixed tensors all together, using the metric
to raise and lower indices as needed. Ricci automatically expands wedge
products of sums and scalar multiples, and arranges factors in lexical order
by inserting appropriate signs.

The interpretation of Wedge in terms of tensor products is determined by
the global variable $WedgeConvention. In output form, wedge products
are indicated with a caret:

x ^ y ^ z

See also $WedgeConvention, Alt, TensorProduct, ProductExpand.

8.2 Global variables

This section describes Ricci’s global variables: these are symbols that can be set
by the user to control the way Ricci evaluates certain expressions. For example,
to change the value of $WedgeConvention to Det, just execute the assignment

$WedgeConvention = Det

8 REFERENCE LIST 89

The variables described below all begin with $, and are all saved automatically
if you issue the RicciSave command.

$DefaultTangentBundle 2.1

The global variable $DefaultTangentBundle can be set by the user to
a bundle or list of bundles. It is used by DefineBundle as the de-
fault value for the TangentBundle option, by DefineTensor as the de-
fault value for the Bundle option, and by BasisExpand and similar com-
mands as the default bundle for tensors such as Curv, Conn, and Tor that
are not intrinsically associated with any particular bundle. By default,
$DefaultTangentBundle is set to the first bundle the user defines (or the
direct sum of this bundle and its conjugate if the bundle is complex).
If you want to override this default behavior, you can give a value to
$DefaultTangentBundle before calling DefineBundle. For example:

$DefaultTangentBundle = {horizontal, vertical}

specifies that the tangent bundle of all subsequently-defined bundles is to
be the direct sum of the bundles named horizontal and vertical. See
also DefineTensor, DefineBundle, BasisExpand.

$LaplacianConvention 4.5

$LaplacianConvention determines which sign convention is used for the
covariant Laplacian on functions and tensors.

$LaplacianConvention = DivGrad means that Laplacian[x] =

Div[Grad[x]], while $LaplacianConvention = PositiveSpectrum

means that Laplacian[x] = -Div[Grad[x]]. Default is DivGrad. See
also Laplacian.

$MathFunctions

$MathFunctions is a list of names that have been defined as scalar math-
ematical functions for use by Ricci. See also DefineMathFunction.

$Quiet

The global variable $Quiet is used by Ricci to determine whether the
defining and undefining commands report on what they are doing. Setting
$Quiet=True will silence these chatty commands. The default is False.
It can be overridden for a particular command by specifying the Quiet

option as part of the command call.

$RiemannConvention 7.2

The global variable $RiemannConvention can be set by the user to spec-
ify a default value for the RiemannConvention option of DefineBundle.
The allowed values are FirstUp and SecondUp (the default). See also
DefineBundle.

8 REFERENCE LIST 90

$TensorFormatting 2.2

The global variable $TensorFormatting can be set to True or False by
the user to turn on or off Ricci’s special output formatting of tensors and
indices. Default is True.

$TensorTeXFormatting

The global variable $TensorTeXFormatting can be set to True or False
by the user to turn on or off Ricci’s special formatting of tensors in
TeXForm. Default is True.

$WedgeConvention 3.2

The global variable $WedgeConvention can be set by the user to determine
the interpretation of wedge products. The allowed values are Alt and Det.
The default is Alt. Suppose α is a p-form and β a q-form:

$WedgeConvention = Alt:

α ∧ β = Alt(α⊗ β) and Basis1 ∧ . . . ∧ Basisn =
1

n!
det

$WedgeConvention = Det:

α ∧ β =
(p+ q)!

p!q!
Alt(α ⊗ β) and Basis1 ∧ . . . ∧ Basisn = det

See also Wedge, Alt.

