CONVOLUTIONS AND ABSOLUTE CONTINUITY¹

D. A. LIND

ABSTRACT. We show that if E is a subset of the circle with positive Lebesgue measure, and g is integrable on almost every translate of E, then g is integrable on the whole circle. A generalization of this fact leads to a characterization of positive measures with nonvanishing absolutely continuous part.

Let T denote the multiplicative circle group with Haar measure m, and $tE=\{tx:x\in E\}$ be the translate of $E\subseteq T$ by $t\in T$. If m(E)>0 and $g\ge 0$ is integrable on every translate of E, can one conclude that g is integrable? Equivalently, does $\chi_E*g<\infty$ everywhere imply $g\in L^1(T)$? If $\chi_E*g\in L^1(T)$, then Fubini's theorem instantaneously implies $g\in L^1(T)$. However, the remaining possibility requires more delicacy. An affirmative answer is a corollary of Theorem 1.

Everything here extends to arbitrary compact groups, and maybe even further.

We let P denote the class of nonzero, nonnegative, measurable functions on T, and M^+ the finite, positive regular Borel measures on T. The phrase "a.e." always refers to m.

LEMMA. If
$$v \in M^+$$
, $m(E) > 0$, and $0 < \alpha < 1$, then
$$m\{t: v(tE) > \alpha m(E)v(T)\} \ge (1 - \alpha)[m(E)^{-1} - \alpha]^{-1}.$$

PROOF. Let $\varphi(t) = v(tE)$. Then $0 \le \varphi \le v(T)$ and $I = \int \varphi \ dm = m(E)v(T)$ by Fubini's theorem. Clearly $\varphi \le \alpha I + [v(T) - \alpha I]\chi_{\{\varphi > \alpha I\}}$, and integrating this gives the result.

Theorem 1. If μ is a σ -finite positive Borel measure, $f \in P$, and $f * \mu < \infty$ a.e., then $\mu(T) < \infty$.

PROOF. We may assume $f = \chi_E$ for some set E of positive measure. Since μ is σ -finite, there are sets $F_n \uparrow T$ with $\mu(F_n) < \infty$. If we let $\mu_n = \mu|_{F_n}$, the Lemma shows that if $0 < \alpha < 1$ and $K_n = \{t: \mu_n(tE) > \alpha m(E)\mu_n(T)\}$, then

Received by the editors May 17, 1972.

AMS (MOS) subject classifications (1970). Primary 26A30, 28A20; Secondary 22C05, 43A75.

Key words and phrases. Compact group, integrable on translates, positive measure, singular measure, finiteness of convolutions, absolute continuity.

¹ Supported in part by an NSF Graduate Fellowship.

348 D. A. LIND

 $m(K_n) \ge (1-\alpha)[m(E)^{-1}-\alpha]^{-1}$ for all n. Hence

$$m(\limsup K_n) \ge (1 - \alpha)[m(E)^{-1} - \alpha]^{-1} > 0,$$

and for almost all $t \in \limsup K_n$ we have $\infty > \mu(tE) = \lim \mu_n(tE) \ge \limsup \alpha m(E)\mu_n(T)$. Thus $\mu(T) = \lim \mu_n(T) < \infty$.

COROLLARY 1. If $g \in P$, m(E) > 0, and $\chi_E * g < \infty$ a.e., then $g \in L^1(T)$.

COROLLARY 2. If $f, g \in P$, $f * g < \infty$ a.e., then $f, g \in L^1(T)$.

PROOF OF THE COROLLARIES. When $g < \infty$ a.e., then $\mu = g \, dm$ is σ -finite and the corollaries follow from Theorem 1. If $m\{g = \infty\} > 0$, an easy argument shows that both $\chi_E * g$ and f * g are infinite on a set of positive measure.

REMARKS. 1. Some restriction on μ such as σ -finiteness is necessary in Theorem 1. For let $\mu(E)=0$ if E is of first category, and $\mu(E)=\infty$ otherwise. Then if E is of first category with m(E)>0, we have $\chi_E * \mu \equiv 0$ while $\mu(T)=\infty$.

2. A modification of the proof of Theorem 1 shows that if m(E) > 0 and $g \in P$ is essentially bounded on almost every translate of E, then $g \in L^{\infty}(T)$.

Notice that Corollary 2 shows that if we assume $\mu \ll m$ in Theorem 1, then we can also conclude $f \in L^1(T)$. More generally, if $d\mu/dm = \mu_a \neq 0$, then $f * \mu_a \leq f * \mu < \infty$ a.e. again guarantees $f \in L^1(T)$ by Corollary 2. We show this property characterizes measures with nonvanishing absolutely continuous part.

THEOREM 2. Suppose $\mu \in M^+$. Then $\mu_a \neq 0$ if and only if whenever $f \in P$, $f * \mu < \infty$ a.e., we have $f \in L^1(T)$.

PROOF. By the preceding paragraph we need only show that if $\mu_a=0$, then there is an $f\in P\backslash L^1(T)$ with $f*\mu<\infty$ a.e. We will find $f_N\in P$ with $\int f_N\,dm=1$, and $f_N*\mu<2^{-N}$ except on a set of measure $<2^{-N+1}$. Then $\sum_{1}^{\infty}f_N=f$ has the required properties.

Since μ is regular and supported on a null set S, there are disjoint closed sets $S_n \subseteq S$ with $\mu(T \setminus \bigcup_1^\infty S_n) = 0$. If $\mu_n = \mu|_{S_n}$, then $\sum_1^\infty \mu_n(T) = \mu(T) < \infty$. Choose M so that $\sum_{M+1}^\infty \mu_n(T) < 2^{-2N}$. Since the S_n are closed null sets, there is an interval I such that $H = \{xy : x \in I, y \in \bigcup_1^M S_n\}$ has measure $<2^{-N}$. Let $f_N = m(I)^{-1}\chi_I$. Now $f_N * (\mu_1 + \cdots + \mu_M)$ is supported on H, so off H we have $f_N * \mu = f_N * (\mu_{M+1} + \cdots) = g$, say. But $\int g \, dm = \sum_{M+1}^\infty \mu_n(T) < 2^{-2N}$, so $m\{g > 2^{-N}\} < 2^{-N}$. Since clearly $\int f_N \, dm = 1$, the statements about f_N in the first paragraph are verified, completing the proof.

DEPARTMENT OF MATHEMATICS, STANFORD UNIVERSITY, STANFORD, CALIFORNIA 94305