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ALGEBRAIC Zd-ACTIONS OF ENTROPY RANK ONE

MANFRED EINSIEDLER AND DOUGLAS LIND

Abstract. We investigate algebraic Zd-actions of entropy rank one, namely
those for which each element has finite entropy. Such actions can be com-
pletely described in terms of diagonal actions on products of local fields using

standard adelic machinery. This leads to numerous alternative characteriza-
tions of entropy rank one, both geometric and algebraic. We then compute
the measure entropy of a class of skew products, where the fiber maps are
elements from an algebraic Zd-action of entropy rank one. This leads, via
the relative variational principle, to a formula for the topological entropy of
continuous skew products as the maximum of a finite number of topological
pressures. We use this to settle a conjecture concerning the relational entropy
of commuting toral automorphisms.

1. Introduction

An algebraic Zd-action is an action of Zd by automorphisms of a compact abelian
group. The action has entropy rank one if every element has finite entropy. Ex-
amples include commuting toral automorphisms, multiplication by 2 and by 3 on
the 6-adic solenoid, and Ledrappier’s example on a totally disconnected group [16].
Such actions share many dynamical properties with those of a single group auto-
morphism, yet also exhibit striking rigidity phenomena (see, for example, [12] and
[13]).

We give here a systematic account of all algebraic Zd-actions of entropy rank
one. Each such action can be built up from prime actions of entropy rank one.
Our main method is a modification of standard adelic machinery to show that each
prime action of entropy rank one is algebraically conjugate to a diagonal action on
a finite product of locally compact fields modulo an invariant cocompact discrete
subgroup.

There are just three types of locally compact fields: finite extensions of the
reals R, of the p-adics Qp, or of Laurent power series Fp((t)) over a finite field Fp.
Actions of commuting toral automorphisms use the reals, and actions on solenoids
combine the reals and the p-adics. As we will see, Ledrappier’s example uses the
third and last type of locally compact field. More precisely, it is algebraically
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conjugate to a diagonal action on the product of three isomorphic copies of F2((t))
modulo an invariant cocompact discrete subgroup. Thus Ledreppier’s example can
be viewed as being generated by two commuting “toral” automorphisms, where R
has been replaced by F2((t)). This new viewpoint perhaps explains why Ledrappier’s
example has played such a central role in the development of algebraic Zd-actions.

This structure theory for prime actions allows us to easily compute entropy for
each element of a general algebraic Zd-action with entropy rank one. The generators
of the action modify Haar measure in each locally compact factor by a multiplicative
constant, analogous to the absolute value of an eigenvalue for a toral automorphism.
We assemble this information into a finite set of Lyapunov vectors for the action.
Then the entropy for a particular direction vector is just the sum of the positive
dot products of this direction vector and the Lyapunov vectors.

Skew product transformations have been continual sources of interesting exam-
ples in dynamics. One important instance is the so-called “T -T−1” transformation,
which is a skew product of the 2-shift and its inverse with base transformation also
of the 2-shift. This simply-defined transformation is Kolmogorov but not Bernoulli
with respect to the direct product of Haar measure on the base and the fiber [11].
Its entropy with respect to this measure is log 2. This transformation is also contin-
uous. As shown by Marcus and Newhouse [21], its topological entropy is log(5/2)
and there are exactly two invariant measures of maximal entropy. Marcus and
Newhouse compute the entropy of similar skew products, where the fiber maps are
powers of a single transformation, in other words drawn from a Z-action. They ask
“What happens if one skews into other groups?”

We answer this question for skewing with elements from an algebraic Zd-action
of entropy rank one. The measure entropy of such a skew product has a simple
expression in terms the Lyapunov vectors of the action. Using the relative varia-
tional principle of Ledrappier and Walters [17], we then show that the topological
entropy of a continuous skew product is the largest of a finite number of topological
pressures, analogous to the result of Marcus and Newhouse [21, Thm. B]. When
the base transformation is a shift of finite type, these pressures can be explicitly
computed in terms of the Lyapunov vectors.

Finally, we apply our results to compute the “relational entropy” of commuting
group automorphisms, settling in the negative a conjecture made by Geller and
Pollicott [9].

2. Statement of results

Let X be a compact abelian group. An algebraic Zd-action on X is a homo-
morphism α : Zd → aut(X) from Zd to the group of (continuous) automorphisms
of X . Denote the image of n ∈ Zd under α by αn, so that αm+n = αm ◦ αn and
α0 = IdX . Let ej = (0, . . . , 1, . . . , 0) be the jth standard basis vector of Zd, so that
α is generated by the d commuting automorphisms αej . For a detailed account of
algebraic Zd-actions, see Schmidt’s comprehensive book [28].

Let µ be Haar measure on X , normalized so that µ(X) = 1. Then every auto-
morphism of X preserves µ. By [3, Prop. 7] the topological entropy of αn coincides
with its entropy with respect to µ, and we denote both by h(αn). Say that α has
entropy rank one if h(αn) <∞ for all n ∈ Zd.

Denote by Rd the ring Z[u±1
1 , . . . , u±1

d ] of Laurent polynomials in d commuting
variables with integer coefficients. As explained in Section 3, duality theory provides
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a one-to-one correspondence between Rd-modules M and algebraic Zd-actions αM
on compact abelian groups XM = M̂ . Actions of the form αRd/p, where p is a
prime ideal in Rd, are called prime actions. They form the basic building blocks
for algebraic Zd-actions.

Our first main result is a structure theorem for prime actions of entropy rank
one, which extends earlier work of Schmidt [27] for connected groups.

Theorem 2.1. Let αRd/p be a prime action of entropy rank one on an infinite
group XRd/p. Then there is a finite product A = k(1)×· · ·×k(m) of locally compact
fields, a diagonal action β of Zd on A for which βei multiplies the jth factor k(j) by
ξ

(j)
i ∈ k(j), and a discrete cocompact β-invariant subgroup Λ ⊂ A such that αRd/p

is algebraically conjugate to the quotient action of β on A/Λ.

If k is a locally compact field, µk is a Haar measure on k, and ξ ∈ k, then
µk(ξE) = modk(ξ)µk(E) for all compact subsets E ⊂ k. Here modk(ξ) ∈ [0,∞) is
called the module of ξ, and plays the role of the modulus of an eigenvalue.

For a prime action αRd/p, let β be the diagonal action of Zd on A = k(1) ×
· · · × k(m) described in the previous theorem. For each factor k(j) define the jth
Lyapunov vector v(j) for αRd/p to be

v(j) =
(
log modk(j)(ξ

(j)
1 ), . . . , log modk(j)(ξ

(j)
d )
)
.

Define the set of Lyapunov vectors of αRd/p to be L(αRd/p) = {v(1), . . . ,v(m)} (if
XRd/p is finite, put L(αRd/p) = ∅). The Lyapunov vectors, for example, can be
used to compute h(αn) to be

∑m
j=1 max{n · v(j), 0}.

Next, consider a general algebraic Zd-action α = αM corresponding to an Rd-
module M . For reasons explained in Section 4, we will confine our attention to
Noetherian Rd-modules M , and call such actions Noetherian. In this case, the
corresponding group X = XM has a filtration

X0 = {0} ⊂ X1 ⊂ X2 ⊂ · · · ⊂ Xr−1 ⊂ Xr = X

of α-invariant compact subgroupsXj for which the restriction of α to eachXj/Xj−1

is algebraically conjugate to a prime action αRd/pj . Also, α has entropy rank one
if and only if each of these prime actions does. In this case we define the Lyapunov
vectors of α to be L(α) = L(αRd/p1)∪ · · · ∪L(αRd/pr ), with multiplicity taken into
account. This set turns out to be independent of the particular filtration used. The
addition formula for entropy shows that h(αn) =

∑
v∈L(a) max{n · v, 0}.

We now turn to skew product transformations. Let (Y, ν) be a measure space
and T : Y → Y be a measurable transformation preserving ν. To construct a skew
product with base transformation T using fiber maps from an algebraic Zd-action α,
let s : Y → Zd be a measurable skewing function. Define the skew product T ×s α
on Y ×X by

(T ×s α)(y, x) =
(
T (y), αs(y)(x)

)
.

Clearly T ×s α preserves the product measure ν × µ.
To obtain useful results, we need to assume that s is ν-integrable, namely that∫

Y

‖s(y)‖ dν(y) <∞,



1802 MANFRED EINSIEDLER AND DOUGLAS LIND

where ‖ · ‖ denotes the Euclidean norm on Rd. Hence s has an average value
ν(s) =

∫
Y s(y) dν(y) ∈ Rd. In addition, we often need to assume that s is T -

ergodic, namely that the ergodic averages

1
n

[
s(y) + s(Ty) + · · ·+ s(T n−1y)

]
→
∫
Y

s dν = ν(s)

for ν-almost every y ∈ Y . Of course this condition automatically holds if T itself
is assumed ergodic, but the extra flexibility turns out to be needed.

Theorem 2.2. Let α be a Noetherian algebraic Zd-action of entropy rank one with
Lyapunov vector set L(α). Let T be a measure-preserving transformation of (Y, ν)
and let s : Y → Zd be a ν-integrable and T -ergodic skewing function with average
value ν(s) ∈ Rd. Then

hν×µ(T ×s α) = hν(T ) +
∑

v∈L(α)

max
{
ν(s) · v, 0

}
.

Suppose now that Y is compact, that T is a homeomorphism, and that the
skewing function s : Y → Zd is continuous. Then T ×s α is also a homeomorphism,
and we ask for its topological entropy in terms of the Lyapunov vectors in L(α).
For each subset E ⊂ L(α) define fE(y) =

∑
v∈E s(y) · v, which is a continuous

function on Y . By convention we put f∅(y) ≡ 0. Denote the topological pressure
of a continuous function f : Y → R with respect to T by P(f, T ) (see Walter’s book
[30] for a lucid account of topological pressure and its properties, especially the
variational principle).

Theorem 2.3. Let α be a Noetherian algebraic Zd-action of entropy rank one with
Lyapunov vector set L(α). Suppose that Y is a compact space, and that T : Y → Y
and s : Y → Zd are continuous. For every E ⊂ L(α) define fE(y) =

∑
v∈E s(y) ·v.

Then the topological entropy of T ×s α is given by

h(T ×s α) = max
E⊂L(α)

P(fE , T ).

We remark that when T is a shift of finite type, each of the pressures P(fE , T )
can be computed explicitly. Hence in this case the topological entropy of the skew
product is easily calculated.

For example, let A and B be commuting automorphisms of Tm with real eigen-
values ξ1, . . . , ξm and η1, . . . , ηm, respectively, on their common eigenspaces.
The corresponding Lyapunov vectors for the Z2-action α they generate are v(j) =
(log |ξj |, log |ηj |) for 1 6 j 6 m. Let Y = {1, 2}Z, T be the 2-shift on Y , and
s(y) = ey0 . Thus T ×s α is the skew product of A and B over the 2-shift. Comput-
ing pressures, we find that

(2.1) h(T ×s α) = max
E⊂{1,...,m}

log
(∏
j∈E
|ξj |+

∏
j∈E
|ηj |
)
.

Let Z be a compact metric space, and let R ⊂ Z × Z be an arbitrary closed
subset, or relation. Friedland [8] defined a “relational entropy” h(R) for R to be
the entropy of the shift map on ZN restricted to the compact subset {(zi) ∈ ZN :
(zi, zi+1) ∈ R for all i ∈ N}. If RS is the graph of a continuous transformation
S : Z → Z, then h(RS) coincides with the usual topological entropy h(S), so in this
sense relational entropy generalizes topological entropy.
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Geller and Pollicott [9] studied an entropy e(A,B) for a pair of commuting
transformations A and B, by using the union RA,B of the graphs of A and of B
and putting e(A,B) = h(RA,B). They showed that if Z = T and A and B are
multiplication by p and by q, respectively, with p 6= q, then e(A,B) = log(p + q),
confirming a conjecture of Friedland. They also conjectured a formula for e(A,B)
when A and B are commuting toral automorphisms.

Relational entropy is closely related to skew products. Let A and B be com-
muting group automorphisms, and let α be the algebraic Z2-action defined by
αe1 = A and αe2 = B. The analogue of the condition p 6= q above is that
µ({x : Ax = Bx}) = 0. We can then compute e(A,B) using Theorem 2.3 as
follows.

Theorem 2.4. Let A and B be commuting automorphisms of a compact abelian
group X that generate a Noetherian Z2-action α. Assume that µ({x : Ax = Bx}) =
0. Let Y = {1, 2}Z and T be the shift on Y . Define s : Y → Z2 by s(y) = ey0 . Then
e(A,B) = h(T ×s α).

For example, suppose that A and B are commuting automorphisms of Tm
with real eigenvalues ξ1, . . . , ξm and η1, . . . , ηm, respectively, on their common
eigenspaces. Suppose that µ({x : Ax = Bx}) = 0 or, equivalently here, that
A 6= B. Applying Theorem 2.3 we see that e(A,B) is given by the formula (2.1).
This shows that the formula for e(A,B) conjectured in [9] is not correct.

3. Algebraic Zd-actions

We begin with a brief description of algebraic Zd-actions and their relationships,
via duality, with commutative algebra.

Let X be a compact abelian group, which we assume henceforth to be metrizable.
Then its dual group M = X̂ is discrete, and is also countable by metrizability of X .

Denote by Rd the ring Z[u±1
1 , . . . , u±1

d ] of Laurent polynomials in d commuting
variables with integer coefficients. An element f ∈ Rd has the form

f =
∑
n∈Zd

fn un,

where fn ∈ Z for all n = (n1, . . . , nd) ∈ Zd, fn = 0 for all but finitely many n, and
un = un1

1 · · ·undd .
We use α and duality to make M into an Rd-module as follows. For n ∈ Zd and

a ∈ M put un · a = α̂n(a), where α̂n is the automorphism of M dual to αn. This
extends naturally to all f ∈ Rd by putting

f · a =
∑
n∈Zd

fn(un · a).

The Rd-module M is called the dual module of α.
This process can be reversed. Suppose that M is a countable Rd-module. Then

XM = M̂ is a compact metrizable group. The Rd-module structure on M gives an
algebraic Zd-action αM on XM , in which αn

M is dual to the automorphism of M
given by multiplication by un.

Thus via duality there is a one-to-one correspondence between algebraic Zd-
actions and Rd-modules.

An Rd-module is said to be Noetherian if it satisfies the ascending chain condition
on submodules. We call an algebraic Zd-action Noetherian if its dual module is
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Noetherian over Rd. Duality shows that α is Noetherian if and only if whenever
X1 ⊃ X2 ⊃ . . . is a descending chain of closed α-invariant subgroups, then there is
an m for which Xk = Xm for all k > m.

An ideal p ⊂ Rd is prime if it is a proper ideal with the property that if f ·g ∈ p,
then either f ∈ p or g ∈ p. A prime ideal p ⊂ Rd is associated to an Rd-module M
if there is an a ∈M such that p = {f ∈ Rd : f ·a = 0}. If M is Noetherian over Rd,
then the set asc(M) of associated prime ideals is finite.

Algebraic Zd-actions of the form αRd/p with p a prime ideal in Rd play a funda-
mental role. We call such an action a prime action. If αM is an algebraic Zd-action
with dual module M , then the prime actions αRd/p for p ∈ asc(M) are the associ-
ated prime actions of αM . The associated prime actions of an algebraic Zd-action
carry much of the information about its dynamical behavior.

To illustrate this point, let us characterize those algebraic Zd-actions having the
important finiteness property of expansiveness, a result due to Schmidt [28, Thm.
6.5]. Recall that α is called expansive if there is a neighborhood U of the identity 0X
in X such that ⋂

n∈Zd
αn(U) = {0X}.

Introduce the notations S = {z ∈ C : |z| = 1}, C× = C r {0}, and

VC(p) = {z ∈ (C×)d : f(z) = 0 for every f ∈ p}.

Theorem 3.1. Let M be an Rd-module and let αM be the corresponding algebraic
Zd-action. If αM is expansive, then it is Noetherian.

Assume now that αM is Noetherian, and let asc(M) be the finite set of its asso-
ciated prime ideals. Then the following are equivalent:

(1) αM is expansive.
(2) αRd/p is expansive for every p ∈ asc(M).
(3) VC(p) ∩ Sd = ∅ for every p ∈ asc(M).

The following result shows that expansiveness is “exact.” One direction is proved
in [28, Cor. 6.15], and the other uses a simple argument in the proof of [6, Lemma
4.8].

Proposition 3.2. Let α be an algebraic Zd-action on X, and let K be a closed α-
invariant subgroup of X. Then the action α is expansive if and only if the restriction
αK of α to K is expansive and the induced action αX/K of α on X/K is expansive.

It is often informative to examine a notion of expansiveness along subspaces
of Rd (see [4] for details). Let H be a hyperplane of dimension d − 1 in Rd. Say
that α is expansive along H if there is a neighborhood U of 0X and a ball B(r)
around 0 in Rd such that ⋂

n∈(H+B(r))∩Zd
αn(U) = {0X}.

We let Nd−1(α) denote the set of all hyperplanes along which α is not expansive.
According to [4], if X is infinite, then Nd−1(α) is a closed nonempty subset of the
compact Grassman manifold of hyperplanes, and it determines all lower-dimensional
expansive behavior. For algebraic actions, this set is computed explicitly in [6].
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There is another place where prime actions arise. If M is a Noetherian Rd-
module, then it is easy to find a chain of submodules

(3.1) 0 = M0 ⊂M1 ⊂M2 ⊂ · · · ⊂Mr−1 ⊂Mr = M

such that Mj/Mj−1
∼= Rd/qj for 1 6 j 6 r, where each qj is a prime ideal containing

one of the associated prime ideals of M (see [28, Prop. 6.1]). Dual to this filtration
is a reversed chain of closed αM -invariant subgroups

(3.2) XM = X0 ⊃ X1 ⊃ X2 ⊃ · · · ⊃ Xr−1 ⊃ Xr = {0},
where Xj is the annihilator of Mj in X , and the induced action of αM on Xj−1/Xj

is isomorphic to the prime action αRd/qj . In this sense an arbitrary Noetherian
algebraic Zd-action can be built up as a finite succession of extensions by prime
actions.

Although the prime ideals qj appearing in the successive quotients in (3.1) are
not necessarily unique, we will see in Proposition 8.3 that there is a strong relation
between them and asc(M).

4. Rank one actions

We introduce two notions of rank one for algebraic Zd-actions together with a
closely related notion of irreducibility.

Definition 4.1. Let α be an algebraic Zd-action.
(i) α has entropy rank one if h(αn) <∞ for all n ∈ Zd.
(ii) α has expansive rank one if there exists an n ∈ Zd such that αn is an

expansive transformation.
(iii) α is irreducible if every proper closed α-invariant subgroup is finite.

Remarks 4.2. (1) See [6] for a more general discussion of expansive rank and entropy
rank (with a slightly different definition of entropy rank which is equivalent in
the expansive case). For more information about irreducible actions and their
properties, see [7], [13], [15], and [28, Section 29].

(2) More generally say that α has entropy rank k if the restriction of α to every
subgroup of Zd of rank k has finite entropy, and k is minimal with this property.
Then entropy rank zero corresponds to X being finite. Thus the property defined
in Definition 4.1(i) should really be termed “entropy rank at most one,” but it is
convenient to use the briefer term here. An analogous remark applies to expansive
rank.

Proposition 4.3. If an algebraic Zd-action has expansive rank one, then it also
has entropy rank one.

Proof. Choose n so that αn is expansive. Then by [4, Thm. 6.3] or [29] it follows
that h(αm) <∞ for every m ∈ Zd, so that α has entropy rank one. �

The converse of Proposition 4.3 is false. For example, the identity automorphism
on an infinite compact group has entropy rank one but not expansive rank one.
Less trivially, so does an ergodic toral automorphism which has some eigenvalues
of modulus one. Example 7.4 of [6] gives an interesting algebraic Z3-action of
expansive rank three and entropy rank two.

We next characterize rank one in terms of the associated prime actions. The
case when X is connected is treated in [7, Theorem 4.4]; the argument here for the
general case is similar.
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Proposition 4.4. Let αM be a Noetherian algebraic Zd-action. Then αM has
entropy rank one if and only if each of its associated prime actions αRd/p for p ∈
asc(M) has entropy rank one. Similarly, αM has expansive rank one if and only if
each associated prime action αRd/p has expansive rank one.

Proof. First suppose that αM has entropy rank one. Let p ∈ asc(M). Then p =
{f ∈ Rd : f · a = 0} for some a ∈M , and so Rd/p ∼= Rd · a ⊂M . By duality, αRd/p
is a quotient of αM . Hence h(αn

Rd/p
) 6 h(αn

M ) < ∞ for all n ∈ Zd, so that αRd/p
has entropy rank one.

Conversely, suppose that for each p ∈ asc(M) the associated prime action
αRd/p has entropy rank one. The restriction αXj−1/Xj of αM to a partial quo-
tient Xj−1/Xj from the filtration (3.2) is isomorphic to the prime action αRd/qj ,
where qj contains some p ∈ asc(M). The surjection Rd/p → Rd/qj dualizes to an
inclusion XRd/qj → XRd/p. Hence for every n ∈ Zd we have that

h(αn
Xj−1/Xj

) = h(αn
Rd/qj

) 6 h(αn
Rd/p

) <∞.

Repeated use of Yuzvinsky’s addition formula (see [19] or [28, Thm. 14.1]) then
shows that

h(αn
M ) =

r∑
j=1

h(αn
Xj−1/Xj

) <∞

for every n ∈ Zd, so that αM has entropy rank one.
Now suppose that αM has expansive rank one, so that αn

M is expansive for some
n ∈ Zd. Let p ∈ asc(M). As before, αRd/p is a quotient of αM . By Proposition 3.2,
αn
Rd/p

is expansive, and so αRd/p has expansive rank one for every p ∈ asc(M).
Conversely, suppose that αRd/p has expansive rank one for every p ∈ asc(M).

We will see in Propositions 7.1 and 7.2 that αm
Rd/p

is expansive except for those
m lying in a finite union of hyperplanes in Rd. It follows that there is an n ∈ Zd
for which αn

Rd/p
is expansive for all p ∈ asc(M). Then repeated application of

Proposition 3.2 to the filtration (3.2) shows that αn
M is expansive, so that αM has

expansive rank one. �

The analogue of Proposition 4.4 for entropy rank greater than one can fail,
because the set of nonexpansive hyperspaces can have nonempty interior.

Example 4.5. Consider the Z3-action αR3/p, where p = 〈1+u1+u2, u3−2〉, treated
in [6, Example 5.8], which the reader should consult for details. This action has
expansive rank two, yet the set N2(αR3/p) of nonexpansive 2-planes has nonempty
interior. Hence there are a finite number of prime ideals pj , each obtained from p

by a coordinate change of monomials in R3, such that every 2-plane is nonexpansive
for at least one of the αR3/pj. Let M =

⊕
j R3/pj. Then αM has expansive rank

three, but all of its associated prime actions αR3/pj have expansive rank two.

There exist non-Noetherian actions having entropy rank one.

Example 4.6. Let A = [ 1 1
1 0 ], and consider M = Q2 as an R1-module via u1 · q =

Aq. Then Mn = (n!)−1Z2 is a strictly increasing sequence of R1-submodules whose
union is M , showing that M is not Noetherian over R1. However, XMj+1 is a finite
extension of XMj for j > 1, and so αM has entropy rank one.
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This example works because each intermediate group is a zero entropy extension
of its predecessor. But are there examples of non-Noetherian actions of entropy
rank one where the action on successive quotients has at least one element with
positive entropy? Answering this question turns out to be equivalent to answering
Lehmer’s Problem, which has been open for almost 70 years. According to [18],
the original number-theoretic version of Lehmer’s Problem can be reformulated as
follows.

Problem 4.7 (Lehmer). For every ε > 0 is there an automorphism φ of a compact
abelian group for which 0 < h(φ) < ε?

To see the equivalence between these problems, first suppose that M1 ⊂ M2 ⊂
. . . is an increasing chain of Noetherian Rd-modules such that for every j there is
an n ∈ Zd for which h(αn

Mj+1/Mj
) > 0. Using prime filtrations of the form (3.1), we

may assume that Mj+1/Mj
∼= Rd/qj for prime ideals qj . Anticipating our results

on entropy, our assumption that h(αn
Rd/qj

) > 0 for some n is equivalent to the
existence of a nonzero Lyapunov vector vj ∈ L(αRd/qj ) for all j > 1. It is then
easy to see that there is an n ∈ Zd for which n · vj > 0 for infinitely many j. The
addition formula for entropy shows that

h(αn
M ) = h(αn

M1
) +

∞∑
j=1

h(αn
Rd/qj

) <∞,

and h(αn
Rd/qj

) > n · vj > 0 for infinitely many j. Hence for every ε > 0 there is a j
for which 0 < h(αn

Rd/qj
) < ε, showing that the answer to Lehmer’s Problem would

be affirmative. Conversely, if Lehmer’s problem has an affirmative answer, it is easy
to use a direct product of a countable number of automorphisms with summable
positive entropies having the desired non-Noetherian and entropy properties.

Rather than formulate our results as conditional on Lehmer’s Problem, which
may not confer any essentially new generality, we will confine our attention to
Noetherian actions.

5. Algebraic preliminaries

We sketch here the algebraic ideas needed to describe the structure of algebraic
Zd-actions of entropy rank one. For more algebraic background see [5] and [10].
Detailed accounts of global fields and local fields are contained in [25] and [31].

An integral domain D has characteristic zero if n · 1D 6= 0D for all n > 1, in
which case we write charD = 0. It has characteristic p if p · 1D = 0D for some
prime number p > 2, denoted by charD = p. In the latter case we also say that D
has positive characteristic.

By definition we require that all prime ideals p in Rd be proper. Observe that p is
prime if and only if Rd/p is an integral domain. If p∩Z = {0}, then charRd/p = 0,
and XRd/p is a connected topological group whose topological dimension we denote
by dimXRd/p > 1. If p ∩ Z = pZ for a prime p, then charRd/p = p, and XRd/p is
totally disconnected, or equivalently, dimXRd/p = 0.

If K is an extension field of F, the transcendence degree trdegFK is the maximal
number of elements in K that are algebraically independent over F. For a prime
ideal p in Rd, let K denote the fraction field of Rd/p. If charRd/p = 0, we define
trdegQRd/p to be trdegQK, while if charRd/p = p, we put trdegFp Rd/p to be
trdegFp K.
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The Krull dimension of a ring R is the length r of the longest chain p0 ( p1 (
· · · ( pr of prime ideals in R. The following result clarifies the relationship between
transcendence degree and Krull dimension for quotients Rd/p. Roughly speaking,
it says that the set of prime ideals p in Rd consists of d + 1 layers with respect to
inclusion, where the kth layer consists of those p for which kdimRd/p = d+ 1− k.

Proposition 5.1. The ring Rd has Krull dimension kdimRd = d+1. Every prime
ideal p is contained in a maximal chain

〈0〉 ( p1 ( · · · ( pk = p ( · · · ( pd+1

of prime ideals pj. Its position k is the same for all such chains and is given by
k = d+ 1− kdimRd/p.

If charRd/p = 0, then kdimRd/p = 1 + trdegQRd/p, while if charRd/p = p,
then kdimRd/p = trdegFp Rd/p.

Every maximal ideal m ⊂ Rd has finite index, and Rd/m is a finite field. A
prime ideal p satisfies kdimRd/p = 1 if and only if |Rd/p| = ∞ and |Rd/a| < ∞
for every ideal a ) p.

Proof. Almost all of this is standard commutative algebra for polynomial rings. The
only differences are the use of integer coefficients (which contributes the extra 1 in
kdimRd/p in characteristic zero) and the use of Laurent polynomials (easily handled
by forming fractions from Z[u1, . . . , ud] using the multiplicative set of monomials
for denominators).

Although there are elementary arguments for the statements in the first two
paragraphs, they also follow from the observation that Rd is a Cohen-Macaulay
ring [5, Prop. 18.9], and therefore universally catenary [5, Cor. 18.10].

For the last paragraph, first observe that if m is a maximal ideal, then Rd/m is a
field that is finitely generated over Z as a ring, and is therefore finite. Next, suppose
that kdimRd/p = 1, and let a ) p be an ideal. Considered as an Rd/p-module,
Rd/a has a prime filtration as in (3.1), where each quotient Mj/Mj−1

∼= Rd/mj

for some maximal ideal mj. Hence Mj/Mj−1 is finite for every j, and therefore
so is Rd/a. Conversely, suppose that p is a prime ideal such that |Rd/a| < ∞ for
every ideal a ) p. Let q be a prime ideal with q ) p. Then Rd/q is a finite integral
domain, hence a field, so that q is maximal. Hence kdimRd/p = 1. �

An absolute value | · | on a field K is a function | · | : K→ R such that there is a
constant C so that for all a, b in K we have that

(i) |a| ≥ 0 and |a| = 0 if and only if a = 0,
(ii) |ab| = |a| |b|, and
(iii) |a+ b| ≤ C max(|a|, |b|).

If instead of (iii) the stronger property |a+ b| ≤ max(|a|, |b|) holds, we say that | · |
is a nonarchimedean absolute value; otherwise | · | is archimedian. We will always
assume that | · | is nontrivial, namely that |a| 6= 0, 1 for some a ∈ K. Two absolute
values | · |1 and | · |2 are called equivalent if the metrics they induce on K give the
same topology. This is the case exactly when there is a positive constant κ such
that | · |1 = | · |κ2 . An equivalence class of absolute values is called a place on K.
Places are denoted by letters like v and w, and the set of all places on K is denoted
by P(K). If v ∈ P(K), we let Kv denote the completion of K with respect to any
absolute value in v; this is well defined since absolute values in v give equivalent
metrics on K.
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A global field K is a finite field extension of either Q, in which case K is also
called an algebraic number field, or of Fp(t), where K is called a function field over
Fp. A local field k is the completion k = Kv of a global field with respect to a place
v ∈ P(K).

Ostrowski’s Theorem [25, Thm. 4-30 (i)] states that every place on Q is either
the infinite place ∞ corresponding to the usual absolute value | · |∞, or the place p
corresponding to the p-adic absolute value | · |p for some prime number p, defined
by |mpk/n|p = p−k where p - mn. Places of the second type are called finite places.
The local fields for Q are therefore Q∞ = R and the p-adic fields Qp.

Similarly, by [25, Theorem 4-30 (ii)] every place on Fp(t) is either the infinite
place ∞ defined by ∣∣∣∣fg

∣∣∣∣
∞

= pdeg f−deg g, where f, g ∈ Fp[t],

or the place r defined for an irreducible polynomial r ∈ Fp[t] by

(5.1)
∣∣∣∣fg rk

∣∣∣∣
r

= q−k, where f, g ∈ Fp[t], r - fg, and q = pdeg r.

In this case the infinite place ∞ is determined by some choice of transcendental
element in Fp(t), and we choose this element to be t. Then | · |∞ is defined by
(5.1), where r = 1/t, and so we say that 1/t is the infinite prime in Fp(t). The
completion Fp(t)t of Fp(t) with respect to the place defined by using r = t in (5.1)
is isomorphic to the field Fp((t)) of Laurent series in t defined by

Fp((t)) =
{ ∞∑
j=n

ajt
j : n ∈ Z, aj ∈ Fp

}
.

If r ∈ Fp[t] is irreducible, then Fp(t)r is isomorphic to Fq((u)), where q = pdeg r,
while Fp(t)∞ = Fp(t)t−1 ∼= Fp((t−1)).

Let K be a global field, and let F be the field Q or Fp(t) according to the
characteristic of K. Let w be a place on K and let | · | be an absolute value from w.
The restriction of | · | to F defines an absolute value and therefore a place v for F.
We say that w lies above v. For each place on F there is at least one, but only
finitely many places lying above it. We put

P∞(K) = {w ∈ P(K) : w lies above ∞},
and call elements of P∞(K) the infinite places of K. We also define P0(K) =
P(K) r P∞(K), whose elements are the finite places of K. If charK = 0, then a
place w lies above∞ if and only if the corresponding local field Kw is isomorphic to
R or C, or, equivalently, w is archimedian. Note that when charK > 0, all places,
including ∞, are nonarchimedian.

Every local field is locally compact and nondiscrete. In fact, the classification
theorem [25, Thm. 4-12] shows that every nondiscrete locally compact field is iso-
morphic to either a finite extension of R, or of Qp, or of Fp((t)). Thus the class of
nondiscrete locally compact fields coincides with that of local fields.

Therefore a local field k has a Haar measure µk. For 0 6= a ∈ k the automorphism
x 7→ ax multiplies Haar measure by a fixed number denoted modk(a), so that
µk(aE) = modk(a)µk(E) for every compact set E ⊂ k. We define modk(0) = 0.
It turns out that |a|k = modk(a) is an absolute value on k, which is the one we
will always use. This choice agrees with the absolute values on Q and Fp(t) defined
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above. It also provides the correct normalization of absolute values for the product
formula for global fields K, which asserts that

(5.2)
∏

v∈P(K)

|a|v = 1 for every a ∈ K×.

Let K be a global field and let P(K) be its set of places. Define the adele group
AK of K to be

AK =
{

(av) ∈
∏

v∈P(K)

Kv : |av|v 6 1 for almost every v ∈ P0(K)
}
.

There is a restricted direct product topology on AK making it a locally compact
group with coordinate-wise operations [25, Sec. 5.1]. The diagonal embedding
i : K → AK is defined by i(a)v = a for all v ∈ P(K). It turns out that i(K) is
discrete and cocompact in AK [25, Thm. 5-11]. This will be the key to using adeles
to determine the group XRd/p.

6. Structure theorem for prime actions

In this section we show that a prime action αRd/p of entropy rank one is alge-
braically conjugate to a diagonal action β on a finite product of local fields modulo
a β-invariant discrete cocompact subgroup. This structure results from the crucial
observation that the quotient field K of Rd/p is a global field, and then applying the
adelic machinery described in the previous section to the finite set Sp of places v
on K for which Rd/p is unbounded in Kv. The required conjugacy from αRd/p
to β is then dual to the diagonal embedding Rd/p →

∏
v∈Sp

Kv, and we invoke
self-duality for local fields to complete the description. Several examples show how
this conjugacy works for actions on tori and solenoids. In positive characteristic, it
allows us to locally decompose examples like Ledrappier’s into a direct product of
Laurent power series local fields over a finite field, leading to explicit “eigenspaces”
for such actions.

We first relate entropy rank one, Krull dimension, and global fields.

Proposition 6.1. Let p be a prime ideal in Rd and let K be the quotient field
of Rd/p.

(1) kdimRd/p = 0 iff p is a maximal ideal in Rd iff Rd/p is a finite field.
(2) kdimRd/p = 1 iff K is a global field.
(3) αRd/p has entropy rank one iff kdimRd/p = 0 or 1.

Proof. (1) The definitions show that kdimRd/p = 0 iff p is a maximal ideal in Rd
iff Rd/p is a field. Any field that is finitely generated as an algebra over Z is finite,
and any finite integral domain is a field.

(2) First consider the case charRd/p = 0. By Proposition 5.1, kdimRd/p = 1
iff trdegQK = 0 iff K is global. Now assume that charRd/p = p > 0. Then by
Proposition 5.1, kdimRd/p = 1 iff trdegFp K = 1, and Noether normalization shows
that the latter is equivalent to the existence of a transcendental element u ∈ K such
that K is a finite integral extension of Fp(u), which is the same as K being global.

(3) The proof that kdimRd/p = 1 implies that αRd/p has entropy rank one
follows immediately from the adelic framework we will develop. However, here we
give a direct proof of both directions.
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First consider the case charRd/p = p > 0. Then kdimRd/p = trdegFp K. If
kdimRd/p > 2, there are distinct monomials um and un in Rd/p that are alge-
braically independent. It follows that the subring N that they generate, considered
as a module over Fp[u±n], is isomorphic to a direct sum of countably many copies
of Fp[u±n]. Thus αn

N is the product of infinitely many p-shifts, and so h(αn
N ) =∞.

Since XN is a quotient of XRd/p, we see that h(αn
Rd/p

) =∞, and so αRd/p does not
have entropy rank one.

Continuing with the case charRd/p = p > 0, suppose that trdegFp K 6 1. Fix
n ∈ Zd. If un is algebraic in K over Fp, then Rd/p is an increasing union of
finite subgroups, each invariant under multiplication by un. Therefore XRd/p is
the inverse limit of finite quotients by subgroups invariant under αn

Rd/p
, so that

h(αn
Rd/p

) = 0. Next, suppose that un is transcendental in K over Fp. Since
trdegFp K 6 1, the image of every monomial uk in K is algebraic over the sub-
field Fp(un). Hence K has finite dimension m over Fp(un). Pick f1, . . . , fm ∈ Rd/p
that are linearly independent over Fp(un), and let N be the Fp[u±1]-submodule
of K that they generate. Then αn

N is isomorphic to a product of m copies of the
full p-shift, so that h(αn

N ) = m · p. Now K is the increasing union of multiples
Nj = ajN of N with finite quotients Nj+1/Nj , so that h(αn

K) = m · p. Hence
h(αn

Rd/p
) 6 h(αn

K) <∞, showing that αRd/p has entropy rank one.
Next, consider the case charRd/p = 0, so that by Proposition 5.1 we have

trdegQK = kdimRd/p−1. First suppose that kdimRd/p 6 1. The case kdimRd/p
= 0 cannot arise in characteristic zero, so assume that kdimRd/p = 1. Then K
is algebraic over Q. The images cj of uj in the quotient field K can therefore be
considered as algebraic numbers,

Rd/p ∼= Z[c±1
1 , . . . , c±1

d ] ⊂ K = Q(c1, . . . , cd),

and multiplication by un corresponds to multiplication by cn = cn1
1 · · · cndd in K.

Let k = dimQK and choose a basis for K over Q. Multiplication on K by cn has a
rational matrix A with respect to this basis. Then αn

Rd/p
is a quotient of the dual

Â on K̂ ∼= Q̂k, and h(Â) <∞ by [20]. Thus αRd/p has entropy rank one.
Finally, suppose that kdimRd/p > 2. Then some monomial un must be tran-

scendental. Hence Z[u±n] ⊂ Rd/p is invariant under α̂n
Rd/p

, which means via duality
that αn

Rd/p
has a quotient that is the full shift on TZ, and so h(αn

Rd/p
) =∞. �

Let p be a prime ideal in Rd such that kdimRd/p = 1. Then by the above the
quotient field K of Rd/p is a global field, and let P(K) denote its set of places.
Recall that for each v ∈ P(K) we choose the absolute value | · |v in v defined by
|a|v = modKv (a). For a given v ∈ P(K), we say that Rd/p is v-unbounded if there
is an a ∈ Rd/p for which |a|v > 1. Put

Sp = {v ∈ P(K) : Rd/p is v-unbounded}.

Since Rd/p is finitely generated, Sp is a finite subset of P(K), and it always contains
P∞(K).

Define the adele group of Rd/p to be

ARd/p =
∏
v∈Sp

Kv,
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and the diagonal embedding i : K → ARd/p by i(a)v = a for all a ∈ K and v ∈ Sp.
Our goal is to show that i(Rd/p) is discrete and cocompact in ARd/p.

To do this, introduce

(6.1) Tp = {a ∈ K : |a|v 6 1 for all v ∈ P(K)r Sp},
sometimes called the ring of Sp-integers in K.

Proposition 6.2. Let p be a prime ideal in Rd such that kdimRd/p = 1, let K be
the quotient field of Rd/p, and define the ring Tp of Sp-integers in K by (6.1).

(1) Tp is the integral closure of Rd/p in K.
(2) Tp is finitely generated over Rd/p.
(3) i(Tp) is discrete and cocompact in ARd/p, and therefore so is i(Rd/p).

Proof. Statement (1) follows from the characterization of integral closure of a do-
main in terms of valuations [10, Thm. 10.8]. Statement (2) is a consequence of the
finiteness of the integral closure for affine domains (see [5, Cor. 13.13], which also
applies to finitely generated algebras over Z).

Let j : K → AK denote the diagonal embedding of K into its adele group, and
retain the notation i : Rd/p→ αRd/p for the restricted diagonal embedding defined
above. By [25, Thm. 5-11], j(K) is discrete and cocompact in AK. Hence there is
a compact set C ⊂ AK such that C + j(K) = AK. Let BKv (r) denote the ball of
radius r around 0 in Kv. By definition of the restricted product topology on AK,
there is a finite set F ⊃ P∞(K) of places and an r > 0 such that

C ⊂
∏
v∈F

BKv (r) ×
∏

v∈P(K)rF

BKv (1).

The Approximation Theorem [25, Thm. 5-8] shows that there is an a ∈ K× such
that |a|v < 1/r for all v ∈ F r Sp and |a|v 6 1 for all v ∈ P(K)r (F ∪ Sp). Hence
there is an s > 0 such that

aC ⊂
∏
v∈Sp

BKv (s) ×
∏

v∈P(K)rSp

BKv (1),

and clearly aC + j(K) = AK. Put D =
∏
v∈Sp BKv (s), which is obviously compact.

We claim that it also has the property that i(Tp) + D = ARd/p. For suppose that
x = (xv)v∈Sp

∈ ARd/p. Extend x to an element y ∈ AK by putting yv = xv for all
v ∈ Sp and yv = 0 for all v /∈ Sp. Since aC + j(K) = AK, there exists an element
b ∈ K such that y − j(b) ∈ aC. Then |b|v 6 1 for all v /∈ Sp, so that b ∈ Tp. Hence
x− i(b) ∈ D, showing that i(Tp) +D = ARd/p, as claimed.

Finally, since Tp is finitely generated overRd/p, there is a b ∈ K× for which bTp ⊂
Rd/p. Thus i(Rd/p) is trapped between the two cocompact discrete subgroups
i(bTp) and i(Tp), so itself must be discrete and cocompact. �

We next describe the self-duality of local fields.

Proposition 6.3. Let k be a local field, and for a ∈ k define φa : k → k by
φa(x) = ax. There is a topological isomorphism identifying k̂ with k such that the
dual map φ̂a corresponds to φa.

Proof. Fix a nonzero character χ ∈ k̂. For b ∈ k define the character χb by χb(a) =
χ(ba). Then the correspondence b ↔ χb is a topological isomorphism between k
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and k̂ (see [31, Thm. II.5.3]). Clearly χb
(
φa(x)

)
= χ(bax) = χφa(b)(x), so that φ̂a

is identified with φa. �

Using Proposition 6.1, the following result implies Theorem 2.1, our main result
on the structure of prime actions of entropy rank one.

Theorem 6.4. Let p be a prime ideal of Rd such that kdimRd/p = 1. Then
there is a diagonal action β on the adele group ARd/p and a β-invariant discrete
cocompact subgroup Λ ⊂ ARd/p, such that αRd/p is algebraically conjugate to the
quotient action of β on ARd/p/Λ.

Proof. Abbreviate ARd/p by A. By Proposition 6.2, the image i(Rd/p) ⊂ A is
discrete and cocompact. Let Λ be the annihilator of i(Rd/p) in A. Then Λ is also
discrete and cocompact. The dual of the inclusion i : Rd/p → A is the quotient
Â → Â/Λ ∼=

∏
v∈Sp

K̂v/Λ = XRd/p. Finally, by Proposition 6.3, K̂v is identified
with Kv, and under this identification αRd/p corresponds to a diagonal action β on
Â/Λ. �

Example 6.5 (Single toral automorphism). Let d = 1 and p = 〈u2
1 − u1 − 1〉.

The roots of the generator for p are ξ = (1 +
√

5)/2 and ξ′ = (1 −
√

5)/2. Hence
R1/p ∼= Z[ξ], and its quotient field is K = Q(

√
5). Since ξ is an algebraic unit, R1/p

is v-bounded for all finite places on K. There are exactly two infinite places ∞1

and ∞2 on K, corresponding to the two real embeddings of K. These are given by
|a+ b

√
5|∞1 = |a+ b

√
5|R and |a+ b

√
5|∞2 = |a− b

√
5|R, where a, b ∈ Q and | · |R

is the usual absolute value. Thus here Sp = {∞1,∞2}, and so

AR1/p = K∞1 ×K∞2
∼= R2.

The diagonal embedding of R1/p into AR1/p has image corresponding to the lat-
tice Λ in R2 generated by (1, 1) and (ξ, ξ′). Thus αR1/p corresponds to the Z-action
on the torus AR1/p/Λ ∼= T2 generated by the matrix [ 0 1

1 1 ].

Example 6.6 (Commuting toral automorphisms). Let d = 2 and p = 〈u2
1 − 2u1 −

1, u2
2− 4u2 + 1〉. The roots of the first polynomial are ξ = 1 +

√
2 and ξ′ = 1−

√
2,

and those of the second are η = 2 +
√

3 and η′ = 2−
√

3. All of these are algebraic
units. Then R2/p ∼= Z[ξ, η] = Z[

√
2,
√

3], and K = Q(
√

2,
√

3). As in the previous
example, R2/p is v-bounded for all finite places v on K. There are exactly four
infinite places∞σ on K, one for each element σ in the Galois group G of K over Q,
defined by |a|∞σ = |σ(a)|R. Hence Sp = {∞σ : σ ∈ G} and

AR2/p =
∏
σ∈G

K∞σ
∼= R4.

Then i(R2/p) is a lattice in AR2/p and the quotient is isomorphic to T4. Using this
lattice the Z2-action αR2/p is generated by the toral automorphisms A and B given
by

A =


0 0 1 0
0 0 0 1
1 0 2 0
0 1 0 2

 , B =


0 −1 0 0
1 4 0 0
0 0 0 −1
0 0 1 4

 .
Example 6.7 (Commuting solenoidal automorphisms). Let d = 2 and p = 〈u1 −
2, u2 − 3〉. Then R2/p ∼= Z[1/6], K = Q, and αR2/p is the natural extension of
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the N2-action on T generated by multiplication by 2 and by 3. Hence R2/p is
unbounded exactly at the places 2, 3, and ∞ on Q, so that Sp = {2, 3,∞} and
AR2/p = Q2 × Q3 × R. Then XR2/p is the quotient of AR2/p modulo the invariant
lattice i(R2/p), and so is locally the product of the 2-adics, the 3-adics, and the
reals.

This local product structure for solenoids was first developed in [20] to explain
Yuzvinsky’s formula for the entropy of solenoidal automorphisms. Shortly there-
after, Katok and Spatzier [14] used these ideas to, among other things, give a geo-
metric understanding of Rudolph’s result [26] about measures on T simultaneously
invariant under ×2 and ×3.

Example 6.8 (Ledrappier’s example). Our adelic viewpoint allows us to take apart
Ledrappier’s example to see what makes it tick. Let d = 2 and p = 〈2, 1 +u1 +u2〉.
Then

(6.2) XR2/p
∼=
{
x ∈ (Z/2Z)Z

2
: xi,j + xi+1,j + xi,j+1 = 0 for all i, j ∈ Z

}
.

Here charR2/p = 2. Then R2/p ∼= F2[t±1, (1 + t)−1], where the isomorphism
is defined by u1 7→ t and u2 7→ 1 + t. The quotient field is K = F2(t). The only
places on K where R2/p is unbounded are the finite places corresponding to the
polynomials t and 1 + t, together with the infinite place corresponding to t−1, so
that Sp = {t, 1 + t, t−1}. Thus

AR2/p = F2(t)t × F2(t)1+t × F2(t)t−1 ∼= F2((t)) × F2((1 + t))× F2((t−1)).

Each of these three completions of F2(t) induces a subgroup of XR2/p. Let us
first describe this subgroup explicitly for the place t. Since we are in characteris-
tic 2, it is convenient to write characters on F2((t)) additively with values in F2,
consistent with the isomorphism in (6.2). Define the basic character χ ∈ F2((t))̂by
χ
(∑∞

j=−n ajt
j
)

= a0 ∈ F2. For f ∈ F2((t)) define χf ∈ F2((t))̂by χf (g) = χ(fg).
As in Proposition 6.3, the correspondence f ↔ χf identifies F2((t)) with its dual
group. Thus each f ∈ F2((t)) corresponds to a point we call xf ∈ XR2/p, defined by

(xf )(m,n) = χf (um1 u
n
2 ) = χf (tm(1 + t)n) = χ(tm(1 + t)nf).

Note, for example, that when n < 0 we use the Laurent expansion (1 + t)−1 =
1+t+t2 +t3 + . . . in F2((t)) when defining xf . Explicitly, if f = a0 +a1t+a2t

2 + . . . ,
a portion of the corresponding point xf is shown in Figure 1(a). In Figure 1(b)
we depict the overall structure of such points. There is a half-space of 0’s on the
right, bordered by a line of 1’s, and the double-hatched half-line of coordinates,
corresponding to the coefficients of f , determines the rest of the point in the single-
hatched half-space.

Carrying out a similar analysis for the places 1+ t and t−1 yields points in XR2/p

having structures depicted in Figure 2(a) and (b), respectively. For each there is
a half-space of 0’s, bordered by a line of 1’s, and the double-hatched half-line of
coordinates determines the rest of the coordinates.

This analysis shows that Ledrappier’s example has the same formal structure as
a Z2-action by automorphisms of T3, except that the local field R has been replaced
by three isomorphic copies of the local field F2((t)). For example, let Xt denote the
image of F2((t)) × 0 × 0 ⊂ AR2/p in AR2/p/Λ. Similarly define X1+t and Xt−1

using the other two factors. Then XR2/p is locally the direct product of these three
subgroups, which play the role of “eigenspaces” for the action. Explicitly, suppose
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Figure 1. Points corresponding to the completion at the place t

Figure 2. Points corresponding to the completions at the places
1 + t and t−1

that x ∈ XR2/p is close to 0, so that x contains a large triangle of 0’s with the origin
well within its interior. To find the projection of x to Xt, use the coordinates x−n,0
of x for n > 0 together with the half-space of 0’s bordered by 1’s matching the
left-hand boundary of the triangle of 0’s, to construct a point πt(x) ∈ Xt having
the form shown in Figure 1(b). Construct similar projections π1+t(x) ∈ X1+t and
πt−1(x) ∈ Xt−1 . A simple verification shows that

x = πt(x) + π1+t(x) + πt−1(x)

is the local product decomposition of x. In addition, we can easily recover the
three directional homoclinic groups described in Example 9.5 of [6] as the three
intersections Xt ∩X1+t , Xt ∩Xt−1 , and X1+t ∩Xt−1 .

Example 6.9 (Action defined by a point). Let K be a global field, and let c =
(c1, . . . , cd) ∈ (K×)d. Define the evaluation map ηc : Rd → K by ηc(f) = f(c). The
image of ηc is the subring of Z[c±1

1 , . . . , c±1
d ] of K. We denote the kernel of ηc by

pc, which is prime since ηc maps to a field. Here

Ppc = {w ∈ P0(K) : |cj |w 6= 1 for some j} ∪ P∞(K).

When charRd/pc = 0, the adelic structure has already been used to provide a
description of the action (see [7] or [28, Section II.7]).

7. Characterizations of entropy rank one

This section contains a number of different characterizations of entropy rank one
for prime actions.

We begin with the connected case. Here Q denotes the algebraic closure of Q.
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Theorem 7.1. Suppose that p is a prime ideal in Rd with charRd/p = 0. Then
the following are equivalent:

(1) αRd/p has entropy rank one.
(2) αRd/p is irreducible.
(3) dimXRd/p <∞.
(4) There exists a finite product A = k(1)×· · ·×k(m) of local fields k(j) of char-

acteristic zero, a diagonal Zd-action β on A, and a β-invariant cocompact
discrete subgroup Λ of A, such that αRd/p is conjugate to the action of β
on A/Λ.

(5) kdimRd/p = 1.
(6) trdegQRd/p = 0.
(7) The quotient field K of Rd/p is global.
(8) The vector space Rd/p⊗Q is finite dimensional over Q.
(9) The variety VC(p) is finite.

(10) There exists c ∈
(
Q×
)d such that p = pc = {f ∈ Rd : f(c) = 0}.

If we assume furthermore that αRd/p is expansive, we have three more equivalent
conditions.

(11) αRd/p has expansive rank one.
(12) There exists a finite union U of hyperplanes in Rd such that αn

Rd/p
is ex-

pansive whenever n /∈ U .
(13) The set Nd−1(αRd/p) of nonexpansive hyperplanes is finite.

Proof. By Proposition 6.1, (1), (5) and (7) are equivalent, and by Proposition 5.1
(6) and (7) are equivalent. Standard algebraic arguments show that (6), (8), (9),
and (10) are equivalent. Equivalence of (1) and (2) follows from [7, Thm. 4.4]. By
[7, Thm. 3.4], (2) implies (4), which obviously implies (3) since local fields have
finite topological dimension. By [28, Cor. 7.4], (3) implies (10), completing the
proof that the first ten statements are equivalent.

Assume furthermore that αRd/p is expansive. Equivalence of (12) and (13) fol-
lows from [4, Thm. 3.6], and clearly (12) implies (11). By Proposition 4.3, (11)
implies (1). Now assume that (4) holds. Let β be the diagonal action on A having
the form

(7.1) βn(a(1), . . . , a(m)
)

=
(
cna(1), . . . , cna(m)

)
.

Since αRd/p is assumed expansive, and expansiveness for algebraic actions is deter-
mined locally at 0, each vector

(7.2) v(j) =
(
log |c1|k(j) , . . . , log |cd|k(j)

)
6= 0.

Let H(j) be the orthogonal complement of v(j) in Rd. Then the union U of the
hyperplanes H(1), . . . , H(m) satisfies (12). �

In the case of positive characteristic some conditions in the previous proposition
do not make sense, but expansiveness is guaranteed. The case when Rd/p is finite
has already been dealt with in Proposition 6.1. In the following we let Fp(t) denote
the algebraic closure of Fp(t).

Theorem 7.2. Suppose that p is a prime ideal in Rd with charRd/p = p > 0 and
|Rd/p| =∞. Then the following are equivalent:

(1) αRd/p has entropy rank one.
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(2) αRd/p is irreducible.
(3) There exists a finite product A = k(1) × · · · × k(m) of local fields k(j) of

characteristic p, a diagonal Zd-action β on A, and a β-invariant cocompact
discrete subgroup Λ of A, such that αRd/p is conjugate to the action of β
on A/Λ.

(4) αRd/p has expansive rank one.
(5) kdimRd/p = 1.
(6) trdegFp Rd/p = 1.
(7) The quotient field K of Rd/p is global.
(8) There exists c ∈

(
Fp(t)

×)d such that p = {f ∈ Rd | f(c) = 0}.
(9) There exists a finite union U of hyperplanes in Rd such that αn

Rd/p
is ex-

pansive whenever n /∈ U .
(10) The set Nd−1(αRd/p) of nonexpansive hyperplanes is finite.

Proof. When charRd/p > 0 we know by [6, Prop. 7.3] that entropy rank, expan-
sive rank, and Krull dimension coincide, so that (1), (4), and (5) are equivalent.
Proposition 5.1 and standard algebraic arguments show that (5), (6), (7), and (8)
are equivalent. Finite αRd/p-invariant subgroups of XRd/p correspond via duality
to ideals of finite index in Rd/p, so that Proposition 5.1 also shows that (2) and (5)
are equivalent. Theorem 6.4 shows that (5) implies (3). By [4, Thm. 3.6], (9) and
(10) are equivalent, and (10) clearly implies (4). Finally, assume (3). Then since
αRd/p is expansive, the diagonal action in (7.1) has nonzero vectors v(j) defined by
(7.2), and the argument that (10) follows is the same as there. �

8. Lyapunov vectors

The dynamical behavior of a toral automorphism is largely determined by the
logarithms of the absolute values of its eigenvalues, or its Lyapunov exponents. For
a Zd-action generated by d commuting toral automorphisms, we need to know the
d Lyapunov exponents in each eigenspace, which together form the components of
a Lyapunov vector for the eigenspace. Using our adelic machinery, we show that
these notions make sense for all Noetherian algebraic Zd-actions of entropy rank
one, and this can be used to easily compute entropy for individual elements of the
action.

Before we start, it is convenient to introduce the notion of list, which is a collec-
tion of elements where multiplicity matters but order does not. The list containing
a1, . . . , an is denoted by 〈a1, . . . , an〉. Thus 〈0, 1, 1〉 = 〈1, 0, 1〉 6= 〈0, 1〉. The union
of lists is defined in the obvious way, by joining them together and preserving
multiplicities.

Suppose that αRd/p is a prime action with entropy rank one. By Theorem 2.1,
αRd/p is algebraically conjugate to a diagonal action β on a product k(1)×· · ·×k(m)

of local fields modulo a β-invariant discrete cocompact subgroup. Let β have the
form

βei(a(1), . . . , a(m)) = (ξ(1)
i a

(1)
, . . . , ξ

(m)
i a

(m)),

where ξ(j)
i ∈ k(j). Define

v(j) =
(
log |ξ(j)

1 |k(j) , . . . , log |ξ(j)
d |k(j)

)
,
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which we call the Lyapunov vector for β on k(j). Then the Lyapunov list L(αRd/p)
is defined to be

L(αRd/p) = 〈v(1), . . . ,v(m)〉.
If Rd/p is a field, we define L(αRd/p) = ∅.

Examples 8.1. (1) For the single toral automorphism in Example 6.5, L(αR1/p) =
〈log |ξ|R, log |ξ′|R〉.

(2) For the commuting toral automorphisms in Example 6.6, the Lyapunov list
consists of four vectors (log |σ(ξ)|R, log |σ(η)|R) for σ in the Galois group G.

(3) The action generated by ×2 and ×3 in Example 6.7 has Lyapunov list

L(αR2/p) = 〈(log |2|Q2 , log |3|Q2), (log |2|Q3 , log |3|Q3), (log |2|R, log |3|R)〉
= 〈(− log 2, 0〉, (0,− log 3), (log 2, log 3)〉.

(4) Ledrappier’s Example 6.8 has Lyapunov list

L(αR2/p) =
〈
(log |t|F2((t)), log |1 + t|F2((t))), (log |t|F2((1+t)), log |1 + t|F2((1+t))),

(log |t|F2((t−1)), log |1 + t|F2((t−1)))
〉

= 〈(− log 2, 0), (0,− log 2), (log 2, log 2)〉.

Suppose now that αM is a Noetherian algebraic Zd-action with entropy rank
one. Let

(8.1) 0 = M0 ⊂M1 ⊂ · · · ⊂Mr−1 ⊂Mr = M, Mj/Mj−1
∼= Rd/qj

be a prime filtration of M . If N is a submodule of M , it is easy to see that
asc(M) ⊂ asc(N) ∪ asc(M/N). Thus asc(M) ⊂ {q1, . . . , qr}. By Proposition 4.4,
each αRd/qj has entropy rank one. Thus we can define

L(αM ) =
r⋃
j=1

L(αRd/qj ).

Although the list of qj appearing in (8.1) is not necessarily unique, those qj con-
tributing nonempty lists to L(αM ) always appear, and with the same multiplicity,
in every prime filtration. This is a consequence of the following algebraic result.

Lemma 8.2. Let M be a Noetherian Rd-module such that kdimRd/p 6 1 for every
p ∈ asc(M). Fix a minimal element p of asc(M). Then the quotient Rd/p appears,
and with the same multiplicity, in every prime filtration (8.1).

Proof. This is proved in [19], but there is a simpler argument using localization.
Let p be a minimal element in asc(M). Localizing (8.1) at p and using standard
identifications, we obtain

0 = (M0)p ⊂ (M1)p ⊂ · · · ⊂ (Mr)p = Mp,

where
(Mj)p/(Mj−1)p

∼= (Mj/Mj−1)p
∼= (Rd/qj)p.

Letting K(p) denote the fraction field of Rd/p, minimality of p shows that

(Rd/qj)p =

{
K(p) if qj = p,
0 if qj 6= p.

Hence the number of j for which Rd/qj ∼= Rd/p equals dimK(p)M ⊗Rd K(p), and
so is the same for every prime filtration of M . �



ALGEBRAIC ACTIONS OF ENTROPY RANK ONE 1819

Proposition 8.3. Let M be a Noetherian Rd-module such that kdimRd/p 6 1 for
every p ∈ asc(M). If

0 = M0 ⊂M1 ⊂ · · · ⊂Mr−1 ⊂Mr = M, Mi/Mi−1
∼= Rd/pi,

0 = N0 ⊂ N1 ⊂ · · · ⊂ Ns−1 ⊂ Ns = M, Nj/Nj−1
∼= Rd/qj

are prime filtrations of M , then
r⋃
i=1

L(αRd/pi) =
s⋃
j=1

L(αRd/qj ).

Proof. The minimal prime ideals p in asc(M) are the only ones for which L(αRd/p)
is nonempty, so the result follows from Lemma 8.2. �

Remark 8.4. The product formula for global fields (5.2) shows that if αRd/p is a
prime action of entropy rank one, then

∑
v∈L(αRd/p) v = 0. Hence for a general

Noetherian action of entropy rank one, the sum of its Lyapunov vectors is 0.

We can use Lyapunov vectors to compute entropy of elements of an action.
The following result generalizes the classical formula that the entropy of a toral
automorphism with Lyapunov exponents log |λj | is

∑
j max{log |λj |, 0}.

Proposition 8.5. Let α be a Noetherian algebraic Zd-action of entropy rank one,
and let L(α) be its list of Lyapunov vectors. Then for every n ∈ Zd we have that

(8.2) h(αn) =
∑

v∈L(α)

max{v · n, 0}.

Proof. First consider a prime action αRd/p, and let β be the corresponding diagonal
action on k(1) × · · · × k(m). Then βn is uniformly continuous, and Haar measure is
homogeneous in the sense of Bowen [3]. It follows from [3, Prop. 7] that h(βn) is
given by the right side of (8.2), and therefore so is h(αn

Rd/p
). If α = αM is a Noe-

therian action, then the addition formula for entropy (see [19] or [28, Thm. 14.1]),
applied to a prime filtration for M , shows that (8.2) holds. �

Remark 8.6. For an arbitrary topological Zd-action Milnor defined its directional
entropy in the direction of a vector w ∈ Rd (see [22], and further investigations in
[4, Sec. 6]). An easy modification of the previous proof shows that for a Noetherian
algebraic Zd-action α of entropy rank one, its entropy in direction w is given by∑

v∈L(α) max{v ·w, 0}, and is therefore a continuous function of the direction. For
more on continuity of direction entropy for general actions, see Park’s article [23].

9. Volume decrease in local fields

As a preliminary to computing fiber entropy in the next section, here we compute
the rate of fiber volume decrease for a skew product whose fiber is a local field.

Let (Y, ν) be a measure space, and let T : Y → Y be a measurable transformation
preserving ν. Recall that a function f : Y → R is called T -ergodic if the ergodic
averages

f(y) + f(Ty) + · · ·+ f(T n−1y)
n

→
∫
Y

f dν as n→∞

for ν-almost every y ∈ Y .
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Let k be a local field with Haar measure µk and absolute value | · |k. Thus
µk(aE) = |a|kµk(E) for every a ∈ k and compact E ⊂ k. Let g : Y → k× be
measurable. The following result computes the rate of volume decrease in fibers for
the skew product transformation of Y × k defined by (y, a) 7→ (Ty, g(y)a).

Proposition 9.1. Let k be a local field with Haar measure µk and absolute value
| · |k. Let T be a measure-preserving transformation of (Y, ν), and let g : Y → k× be
measurable. Assume that log |g(y)|k is ν-integrable and T -ergodic. For y ∈ Y and
ε > 0 define

DN (ε, y) =
{
a ∈ k :

∣∣∣a n∏
j=0

g(T jy)
∣∣∣
k
< ε for 0 6 n 6 N − 1

}
.

Then for every ε > 0 and almost every y ∈ Y we have that

lim
N→∞

− 1
N

logµk
(
DN(ε, y)

)
= max

{∫
Y

log |g|k dν, 0
}
.

For the proof we require the following elementary result.

Lemma 9.2. Let {an} be a sequence of real numbers such that an/n → a as
n→∞. Then

max
16n6N

an
N
→ max{a, 0} as n→∞.

Proof. First suppose that a > 0. Fix ε > 0. There is an M > 0 such that
|an/n−a| < ε for all n >M . Hence max16n6N an/N > aN/N > a− ε for N >M .
Also, for M 6 n 6 N we have that an/N 6 an/n < a + ε, and for N sufficiently
large that an/N < a+ ε for 1 6 n 6M . This completes the case a > 0.

Now suppose that a 6 0. Fix ε > 0. Clearly max16n6N an/N > a1/N > −ε for
large enough N . Since a 6 0, there is an M such that an/n < ε for all n > M . If
M 6 i 6 N and ai > 0, then ai/N 6 ai/i < ε, while if an 6 0, then an/N < ε
trivially. Thus for all N sufficiently large we see that max16n6N an/N < ε. �

Proof of Proposition 9.1. Let B(r) denote the ball in k of radius r. Clearly

DN (ε, y) =
N−1⋂
n=0

B
(
ε

n∏
j=0

|g(T jy)−1|k
)

= B
(

min
06n6N−1

ε

n∏
j=0

|g(T jy)−1|k
)
.

Hence

µk
(
DN (ε, y)

)
= min

06n6N−1

{
µk
(
B(ε)

) n∏
j=0

|g(T jy)−1|k
}
,

and so

− 1
N

logµk
(
DN (ε, y)

)
= − 1

N
logµk

(
B(ε)

)
+ max

06n6N−1

1
N

n∑
j=0

log |g(T jy)|k.

Since log |g(y)|k is assumed to be T -ergodic, we have for almost every y that

1
n

n−1∑
j=0

log |g(T jy)|k →
∫
Y

log |g|k dν.
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Then Lemma 9.2 with the sequence an =
∑n−1

j=0 log |g(T jy)|k shows that

− 1
N

logµk
(
DN (ε, y)

)
→ max

{∫
Y

log |g|k dν, 0
}

for every ε > 0 and almost every y ∈ Y . �

10. Fiber entropies

Let α be an algebraic Zd-action of entropy rank one on a compact abelian
group X . To define skew products with α, let T be a measure-preserving transfor-
mation of (Y, ν) and s : Y → Zd be measurable. Define the skew product T ×s α
on Y ×X by (T ×s α)(y, x) =

(
Ty, αs(y)(x)

)
.

Our goal in the next two sections is to compute the measure entropy hν×µ(T×sα)
and, in case T and s are continuous, the topological entropy h(T ×s α).

According to a formula due to Abromov and Rohlin [1] and to Adler [2], the
measure entropy hν×µ(T ×sα) equals hν(T ) plus the integral over Y of the measure
fiber entropies of T ×s α on {y} × X . In this section we first introduce various
topological fiber entropies, and show that they coincide and equal the required
measure fiber entropy. We then show how to compute topological (and therefore
measure) fiber entropy for prime actions from the corresponding diagonal action on
an adele, by controlling possible wrapping in the adele modulo the invariant lattice.

In building up a general Noetherian rank one action from prime actions, we are
inevitably led to consider skew products with affine, rather than automorphism,
fiber maps. To describe these, let τ : Y → X be measurable. Define the affine skew
product T ×s

τ α by

(T ×s
τ α)(y, x) =

(
Ty, αs(y)(x) + τ(y)

)
.

Then
(T ×s

τ α)n(y, x) =
(
T ny, αsn(y)(x) + τn(y)

)
,

where
sn(y) = s(y) + s(Ty) + · · ·+ s(T n−1y)

and

τn(y) =
n∑
j=1

αsn−j(T
jy)τ(T j−1y).

Thus
(T ×s

τ α)n = T n ×sn
τn α.

Define the affine maps Any on X by

(10.1) Any (x) = αsn(y)(x) + τn(y).

Then iterates of T ×s
τ α on a fiber {y} × X are effectively given by the maps Any

on X , and it is these we use to define fiber entropies. We abbreviate the notation
for various fiber entropies h∗(T ×s

τ α, {y} ×X) to h∗(T ×s
τ α, y).

The following gives fiber analogues of standard definitions due originally to
Bowen [3].

Definition 10.1. Let the affine maps Any : X → X for the skew product T ×s
τ α on

Y ×X be given by (10.1). Let ρ be a translation-invariant metric on X compatible
with its topology.
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(1) A set E ⊂ X is (N, ε, y)-spanning for T ×s
τ α if for every x ∈ X there is an

x′ ∈ E such that ρ
(
Any (x), Any (x′)

)
< ε for 0 6 n 6 N − 1. Let rN (ε, y) be the

smallest cardinality of an (N, ε, y)-spanning set, and put

hspan(T ×s
τ α, y) = lim

ε→0
lim sup
N→∞

1
N

log rN (ε, y).

(2) A set F ⊂ X is (N, ε, y)-separated for T ×s
τ α if for distinct points x, x′ ∈ F

there is n with 0 6 n 6 N − 1 for which ρ
(
Any (x), Any (x′)

)
> ε. Let sN (ε, y) be the

largest cardinality of an (N, ε, y)-separated set, and put

hsep(T ×s
τ α, y) = lim

ε→0
lim sup
N→∞

1
N

log sN (ε, y).

(3) Let BX(ε) = {x ∈ X : ρ(x, 0X) < ε}, and put

DN (ε, y) =
N−1⋂
n=0

α−sn(y)
(
BX(ε)

)
.

Define the volume decrease fiber entropy for skew products with automorphisms by

hvol(T ×s α, y) = lim
ε→0

lim sup
N→∞

− 1
N

logµ
(
DN (ε, y)

)
.

Similarly, if β is a diagonal action on a finite product A of local fields, and BA(ε)
is the ε-ball in A, we define hvol(T ×s β, y) as above, with BA(ε) replacing BX(ε).

Lemma 10.2. All of the topological fiber entropies in Definition 10.1 agree:

hspan(T ×s
τ α, y) = hsep(T ×s

τ α, y)

= hspan(T ×s α, y) = hsep(T ×s α, y) = hvol(T ×s α, y).

Proof. The equality of spanning set entropy for T ×s α and its affine counterpart
T ×s

τ α follows because the metric ρ is translation-invariant; similarly for separated
set entropy.

If F is maximal (N, ε, y)-separated for T×sα, it is also (N, ε, y)-spanning. Hence
rN (ε, y) 6 sN(ε, y), and so hspan(T ×s α, y) 6 hsep(T ×s α, y). Furthermore, the sets
x + DN(ε/2, y) for x ∈ F are disjoint, so sN (ε, y)µ

(
DN (ε/2, y)

)
6 1, proving

that hsep(T ×s α, y) 6 hvol(T ×s α, y). Finally, if E is (N, ε, y)-spanning, then⋃
x∈E(x+DN(ε, y)) = X . Hence rN (ε, y)µ

(
DN(ε, y)

)
> 1, so that hvol(T ×sα, y) 6

hspan(T ×s α, y). �

Next we turn to measure fiber entropy. Let Hµ(P ) denote the usual entropy of
a finite measurable partition P of X .

Definition 10.3. The measure fiber entropy of an affine skew product T ×s
τ α is

defined by

hµ(T ×s
τ α, y) = sup

P
lim sup
N→∞

1
N

Hµ
(N−1∨
n=0

(Any )−1(P )
)
,

where the supremum is taken over all finite measurable partitions of X .

The following proposition, which is a special case of results due to Abromov and
Rohlin [1] and to Adler [2], computes the entropy of T ×s

τ α in terms of the base
and measure fiber entropies.
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Proposition 10.4. Let T be a measure-preserving transformation of (Y, ν), s be
ν-integrable, and τ : Y → X be measurable. Then

hν×µ(T ×s
τ α) = hν(T ) +

∫
Y

hµ(T ×s
τ α, y) dν(y).

To make use of this result, we need to relate topological and measure fiber
entropy. The following fact, whose proof is exactly the same as in the proof of
Theorem 13.3 in [28], shows that they are within a universal constant of each
other. We use this later to show that they in fact agree.

Lemma 10.5. The topological and measure fiber entropies satisfy

hvol(T ×s α, y) 6 hµ(T ×s α, y) 6 hvol(T ×s α) + 1 + log 2.

The volume decrease fiber entropy is easy to compute for diagonal actions on
products of local fields.

Lemma 10.6. Let A = k(1) × · · · × k(m) be a product of local fields, and let β be a
diagonal Zd-action on A with Lyapunov list 〈v(1), . . . ,v(m)〉. Let T be a measure-
preserving transformation of (Y, ν), and s : Y → Zd be ν-integrable and T -ergodic
with average value ν(s) ∈ Rd. Then for almost every y ∈ Y we have that

(10.2) hvol(T ×s β, y) =
m∑
j=1

max{ν(s) · v(j), 0}.

Proof. Clearly we are free to choose a compatible metric on A when computing hvol,
and we use

(10.3) ρ
(
(a(j)), (b(j))

)
= max

16j6m
|a(j) − b(j)|k(j) .

Then BA(ε) = Bk(1)(ε)× · · · ×Bk(m)(ε). We can now apply Proposition 9.1 to each
factor k(j) separately, resulting in a contribution of max{ν(s) · v(j), 0}. Adding
these together completes the proof. �

Suppose that α = αRd/p is a prime action on X = XRd/p of entropy rank
one. Let β be the corresponding diagonal action on the adele A = ARd/p, with β-
invariant cocompact discrete subgroup Λ ⊂ A such that A/Λ ∼= X . If the skewing
function s is assumed to be bounded, then the local isomorphism between X and
A shows that hvol(T ×s α, y) = hvol(T ×s β, y) for every y ∈ Y . This is effectively
Bowen’s calculation of the entropy of a toral automorphism from the entropy of the
covering linear map [3, Cor. 16]. However, when s is unbounded the intersections to
compute hvol(T ×sα, y) can be much more complicated than those for hvol(T ×sβ, y)
owing to wrapping phenomena in X for sets α−s(T jy)

(
BX(ε)

)
when s(T jy) is very

large. Marcus and Newhouse [21] control this for Z-actions by inducing on a subset
of Y defined by a first exit time to reduce to the case of bounded s; however, this
technique is not available for Zd-actions.

Proposition 10.7. Let α be a prime action of entropy rank one, and let β be the
corresponding diagonal action. Let T be a measure-preserving transformation of
(Y, ν), and s : Y → Zd be ν-integrable. Then

hvol(T ×s α, y) = hvol(T ×s β, y)

for ν-almost every y ∈ Y .



1824 MANFRED EINSIEDLER AND DOUGLAS LIND

Proof. Let A = k(1) × · · · × k(m) and β be the diagonal action defined by

βn
(
a(1), . . . , a(m)

)
=
(
cn

1a
(1), . . . , cn

ma
(m)
)
,

where cj ∈ (k(j))d. Let Λ be the β-invariant lattice in A such that X ∼= A/Λ. We
use the metric on A in (10.3), and its quotient metric on X . Thus the quotient
map φ : A → A/Λ = X is a local isometry. We normalize Haar measure on A so
that φ is also locally measure-preserving, and let µ denote Haar measure on both
A and X .

Define

DX
N (ε, y) =

N−1⋂
n=0

α−sn(y)
(
BX(ε)

)
and DAN (ε, y) =

N−1⋂
n=0

β−sn(y)
(
BA(ε)

)
.

Since φ is a local isometry, for sufficiently small ε we have that φ
(
DAN (ε, y)

)
⊂

DX
N (ε, y). Hence hvol(T ×s α, y) 6 hvol(T ×s β, y) for every y ∈ Y .
To prove the reverse inequality, we first claim that there is a constant θ such

that if rj > 1 and Q is the rectangle Bk(1)(r1) × · · · × Bk(m)(rm), then |Q ∩ Λ| 6
θµ(Q). To see this, observe that since Λ is discrete there is 0 < η < 1/2 such that
ρ(a, b) > 2η for distinct a, b ∈ Λ. Hence the sets BA(η) + a are disjoint for a ∈ Λ.
Furthermore, since rj > 1 and η < 1/2, there is a γ > 0 such that if a ∈ Q, then
µ
(
Q ∩ (BA(η) + a)

)
> γ. Hence |Q ∩ Λ|γ 6 µ(Q), and so we can take θ = 1/γ to

verify our claim.
Next, for n ∈ Zd and ε > 0, define fε(n) to be the number of lattice points

a ∈ Λ for which BA(ε) ∩ β−n
(
BA(ε) + a

)
6= ∅. Clearly, for fixed n the function

fε(n) decreases as ε decreases, and fε(n)→ 1 as ε→ 0.
If a ∈ Λ is such that BA(1) ∩ β−n

(
BA(1) + a

)
6= ∅, then

a ∈ βn
(
BA(1)

)
+BA(1) ⊂ Q =

m∏
j=1

Bk(j)
(
1 + ‖cn

j ‖k(j)
)
,

where ‖ · ‖k(j) is the sup norm on
(
k(j)

)d. Using obvious estimates on the measures
of balls in k(j) together with the inequality |Q ∩ Λ| 6 θµ(Q) from the previous
paragraph, we see that there are constants C > 0 and λ > 1 such that

(10.4) fε(n) 6 f1(n) 6 θµ(Q) 6 Cλ‖n‖.

Next, observe that for ε small enough, α−s(y)
(
BX(ε)

)
∩ BX(ε) is made up

of at most fε(s(y)) pieces, one for each lattice point a ∈ Λ for which BA(ε) ∩
β−s(y)

(
BA(ε) + a

)
6= ∅, and each piece is contained in a translate of

φ
(
BA(2ε) ∩ β−s(y)BA(2ε)

)
. Continuing inductively, we see that

DX
N (ε, y) = BX(ε) ∩ α−s1(y)

(
BX(ε)

)
∩ · · · ∩ α−sN−1(y)

(
BX(ε)

)
is the union of at most

pN (ε, y) =
N−1∏
n=1

fε
(
s(T ny)

)
pieces, each contained in a translate of φ

(
DAN (2ε, y)

)
. Hence

(10.5) µ
(
DX
N (ε, y)

)
6 pN (ε, y) · µ

(
DAN(2ε, y)

)
.
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By (10.4), 0 6 log fε(s(y)) 6 logC + ‖s(y)‖ logλ, so that log fε(s(y)) is ν-
integrable on Y since s(y) is. Also,

1
N

log pN(ε, y) =
1
N

N−1∑
n=1

log fε(s(T ny))

is an ergodic average of log fε(s(y)). By the ergodic theorem, there is an in-
tegrable function gε > 0 with

∫
Y gε(y) dν(y) =

∫
Y log fε(s(y)) dν(y) such that

N−1 log pN (ε, y) → gε(y) as N → ∞ for almost every y. Clearly gε decreases
as ε decreases. Since log fε(s(y)) → 0 as ε → 0, it follows from the monotone
convergence theorem that∫

Y

lim
ε→0

gε(y) dν(y) = lim
ε→0

∫
Y

gε(y) dν(y) = lim
ε→0

∫
Y

log fε(s(y)) dν(y)

=
∫
Y

lim
ε→0

log fε(s(y)) dν(y) = 0.

Hence limε→0 gε(y) = 0 for almost every y.
Finally, from (10.5) we see that

hvol(T ×s α, y) > hvol(T ×s β, y)− lim
ε→0

lim
N→∞

1
N

log pN (ε, y)

= hvol(T ×s β, y)− lim
ε→0

gε(y) = hvol(T ×s β)

for ν-almost every y, concluding the proof. �

To prove our entropy formula for actions built up from prime actions, we need
the following simple inequality.

Lemma 10.8. Let K ⊂ X be a compact α-invariant subgroup, and denote the
restriction of α to K by αK and the resulting action on the quotient X/K by
αX/K . Then

hvol(T ×s α, y) > hvol(T ×s αK , y) + hvol(T ×s αX/K , y)

for every y.

Proof. Let π : X → X/K be the natural projection map. We may assume that the
metric on X induces the metrics on K and on X/K.

Fix N and ε > 0. Define sets DX
N (ε, y), DK

N (ε, y), and D
X/K
N (ε, y) using these

metrics and the actions α, αK , and αX/K , respectively. Clearly π
(
DX
N (ε, y)

)
⊂

D
X/K
N (ε, y). If x, x′ ∈ DX

N (ε, y) and x − x′ ∈ K, then x − x′ ∈ DK
N (2ε, y). By

Fubini’s Theorem,

µX
(
DX
N (ε, y)

)
=
∫
X/K

µK
(
DX
N (ε, y)− x

)
dµX/K(x)

6
∫
D
X/K
N (ε,y)

µK
(
DK
N (2ε, y)

)
dµX/K(x)

6 µX/K
(
D
X/K
N (ε, y)

)
µK
(
DK
N (2ε, y)

)
.

The result now follows using Definition 10.1(3). �
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11. Entropy of skew products

Our fiber entropy results of the previous section provide the basis for computing
the measure and topological entropy of skew products with Noetherian algebraic
Zd-actions of entropy rank one. The following result includes Theorem 2.2.

Theorem 11.1. Let α be a Noetherian algebraic Zd-action of entropy rank one
and Lyapunov vector list L(α). Let T be a measure-preserving transformation of
(Y, ν). Suppose that s : Y → Zd is T -ergodic and ν-integrable with average value
ν(s), and that τ : Y → X is measurable. Then the measure fiber entropy of T ×s

τ α
is given by

(11.1) hµ(T ×s
τ α, y) = hvol(T ×s α, y) =

∑
v∈L(α)

max{ν(s) · v, 0}

for ν-almost every y. Hence the measure entropy of T ×s
τ α is

(11.2) hν×µ(T ×s
τ α) = hν(T ) +

∑
v∈L(α)

max{ν(s) · v, 0}.

Proof. Consider first the case of a prime action α = αRd/p. Put

h = h(s) =
∑

v∈L(α)

max{ν(s) · v, 0}.

By Lemmas 10.5 and 10.6 and Proposition 10.7,

h 6 hµ(T ×s
τ α, y) 6 h+ 1 + log 2

for almost every y. By Proposition 10.4,

(11.3) hν(T ) + h 6 hν×µ(T ×s
τ α) 6 hν(T ) + h+ 1 + log 2.

Now (T ×s
τ α)n = T n ×sn

τn α. Since

ν(sn) =
n−1∑
j=0

ν(s ◦ T j) = n ν(s),

then h(sn) = nh(s) = nh. Applying (11.3) to (T ×s
τ α)n gives

hν(T n) + h(sn) 6 hν×µ
(
(T ×s

τ α)n
)
6 hν(T n) + h(sn) + 1 + log 2

or
n hν(T ) + nh 6 n hν×µ(T ×s

τ α) 6 n hν(T ) + nh+ 1 + log 2.

Dividing by n and letting n→∞ proves (11.2) in this case.
By Lemma 10.5, h = hvol(T ×s α, y) 6 hµ(T ×s

τ α, y) for almost every y, and by
the above,

∫
Y hµ(T ×s

τ α, y) dν(y) = h, which establishes (11.1) in this case as well.
We prove the general Noetherian action case by induction on the length of a

prime filtration, the above establishing the result for filtrations of length one.
Suppose that K is a compact α-invariant subgroup of X , that αK is a prime

action, and that (11.1) and (11.2) hold for αK and for αX/K . We represent T ×s
τ α

as a succession of two skew products to which our results apply, as follows.
By [24, I.5.1], there is a Borel cross-section σ : X/K → X to the natural quo-

tient map π : X → X/K such that π ◦ σ is the identity on X/K. This induces a
measurable isomorphism φ : X → (X/K) × K, given by φ(x) =

(
x, b(x)

)
, where

x = x + K ∈ X/K and b(x) = x − σ(x). Under this isomorphism Haar measure
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µ on X corresponds to the product µX/K × µK on X/K and on K. Further-
more, αn is conjugated to the map (x, k) 7→

(
αn
X/K(x), αn

K(k) + b(αnσ(x))
)

for
(x, k) ∈ (X/K)×K.

Define τ : Y → X/K by τ (y) = τ(y) = τ(y) + K. Consider the skew product
S = T ×s

τ αX/K on Y ′ = Y × (X/K). From our induction hypothesis, we know that

(11.4)

hν×µX/K (S) = hν×µX/K (T ×s
τ αX/K)

= hν(T ) +
∑

v∈L(αX/K)

max{ν(s) · v, 0}.

Next consider the skew product S ×s′

τ ′ αK on Y ′ ×K, where s′(y, x) = s(y) and
τ ′(y, x) = b

(
αs(y)σ(x) + τ(y)

)
. Observe that since s′ depends only on the first

coordinate, and agrees with s there, it follows that s′ is S-ergodic with respect to
ν × µX/K , and that (ν × µX/K)(s′) = ν(s). Since αK is prime, our earlier work
shows that

(11.5) h(ν×µX/K)×µK (S ×s′

τ ′ αK) = hν×µX/K (S) +
∑

v∈L(αK)

max{ν(s) · v, 0}.

Now IdY ×φ conjugates T ×s
τ α to

(T ×s
τ αX/K)×s′

τ ′ αK = S ×s′

τ ′ αK .

Putting together (11.4) and (11.5), and recalling that L(α) = L(αX/K) ∪ L(αK),
we obtain (11.2) for α.

Let

hK =
∑

v∈L(αK)

max{ν(s) · v, 0} and hX/K =
∑

v∈L(αX/K)

max{ν(s) · v, 0}.

By our induction hypothesis, we know that

hvol(T ×s αK , y) = hK and hvol(T ×s αX/K , y) = hX/K

for ν-almost every y. By our calculation of h(T ×s
τ α) and Proposition 10.4, we

have that ∫
Y

hµ(T ×s
τ α, y) dν(y) = hK + hX/K .

Finally, by Lemmas 10.5 and 10.8,

hµ(T ×s
τ α, y) > hvol(T ×s α, y)

> hvol(T ×s αK , y) + hvol(T ×s αX/K) = hK + hX/K .

It follows that hµ(T ×s
τ α, y) = hK + hX/K for almost every y, completing the

proof. �

We next compute topological entropy for continuous skew products. For this,
suppose that Y is a compact metric space, and that T : Y → Y , s : Y → Zd, and
τ : Y → X are continuous. Thus T ×s

τ α is a continuous transformation of the
compact metric space Y ×X , whose topological entropy we denote by h(T ×s

τ α).
The topological fiber entropies from Definition 10.1 we denote by h(T ×s

τ α, y). We
let P(f, T ) denote the topological pressure of a continuous real-valued function f
on Y with respect to T . The following includes Theorem 2.3.
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Theorem 11.2. Let α be a Noetherian algebraic Zd-action of entropy rank one
with Lyapunov vector list L(α). Let Y be a compact metric space, and assume that
T : Y → Y , s : Y → Zd, and τ : Y → X are continuous. For every E ⊂ L(α) define
fE(y) =

∑
v∈E s(y) · v. Then

(11.6) h(T ×s
τ α) = max

E⊂L(α)
P(fE , T ).

Proof. Let π : Y ×X → Y be projection to the first coordinate. Fix an arbitrary T -
invariant ergodic measure ν on Y . The relative variational principle of Ledrappier
and Walters [17] asserts that

sup
λ∈π−1(ν)

hλ(T ×s
τ α) = hν(T ) +

∫
Y

h(T ×s
τ α, y) dν(y),

where the supremum is taken over all measures λ invariant under T ×s
τ α that

project to ν. By Theorem 11.1

h(T ×s
τ α, y) =

∑
v∈L(α)

max{ν(s) · v, 0}

= sup
E⊂L(α)

∑
v∈E

ν(s) · v = sup
E⊂L(α)

∫
Y

fE dν.

By the usual variational principle, we can compute h(T ×s
τ α) as the supremum

of hλ(T ×s
τ α) over all ergodic measures λ on Y ×X . Such a measure projects under

π to a T -invariant ergodic measure on Y . Hence

h(T ×s
τ α) = sup

ν

{
sup

λ∈π−1(ν)

hλ(T ×s
τ α)

}
= sup

ν

{
hν(T ) + sup

E⊂L(α)

∫
Y

fE dν
}

= sup
E⊂L(α)

sup
ν

{
hν(T ) +

∫
Y

fE dν
}

= sup
E⊂L(α)

P(fE , T ),

where in the last line we use the variational principle for the pressure of fE with
respect to T . �

For example, if T is a shift of finite type, then s depends on only finitely many
coordinates, and each of the pressures P(fE , T ) can be computed explicitly.

Example 11.3. Let α be a Z2-action of entropy rank one with Lyapunov vectors
(v1, w1), . . . , (vm, wm). Let Y2 = {1, 2}Z and T2 be the 2-shift on Y2. Define
s : Y2 → Z2 to be s(y) = ey0 . An easy calculation of pressure shows that

(11.7) h(T2 ×s α) = max
E⊂{1,...,m}

log
[
exp
(∑
j∈E

vj

)
+ exp

(∑
j∈E

wj

)]
.

Note that taking E = ∅ gives log 2 on the right side, corresponding to the fact that
h(T2 ×s α) must be at least as large as the entropy h(T2) = log 2 of the base.

12. Relational entropy for commuting group automorphisms

In [8] Friedland studies a general notion of entropy for relations, defined as
follows. Let Z be a compact metric space and R be a closed subset of Z × Z, or
relation on Z. Put

X(R) = {x ∈ ZN : (xi, xi+1) ∈ R for all i ∈ N}.
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Let σX(R) denote the one-sided shift on X(R). Define the relational entropy hrel(R)
of R to be the topological entropy h(σX(R)).

As Friedland notes, if T : Z → Z is continuous and RT = {(z, T z) : z ∈ Z} is
the graph of T , then hrel(RT ) reduces to the usual topological entropy h(T ) of T .
In this sense relational entropy generalizes topological entropy.

Using these ideas, Geller and Pollicott [9] introduced the relational entropy
e(S, T ) of a pair S, T of commuting transformations. They put RS,T = RS ∪ RT ,
the union of the graphs of S and of T , and defined e(S, T ) = hrel(RS,T ). This
definition has an obvious extension to e(T1, . . . , Td) for d commuting maps Tj by
using the relation RT1,...,Td = RT1 ∪ · · · ∪ RTd .

One of their main results is that if Z = T, S is multiplication by p, and T is mul-
tiplication by q 6= p, then e(S, T ) = log(p+ q), verifying a conjecture of Friedland.
They considered pairs of transformations that are commuting automorphisms of a
compact abelian group, and conjectured a formula for e(A,B), where A and B are
commuting toral automorphisms.

Let A1, . . . , Ad be commuting automorphisms of a compact abelian group X
with Haar measure µ. Denote by α the algebraic Zd-action they generate via
αej = Aj . Assume that the Aj are essentially distinct, namely that they satisfy
the condition µ({x ∈ X : Ai(x) = Aj(x)}) = 0 for all i 6= j, corresponding to the
condition p 6= q above. Then we can compute e(A1, . . . , Ad) using our previous
results on skew products, in this case using the full d-shift as base. The following
result contains Theorem 2.4 as the case d = 2.

Theorem 12.1. Let A1, . . . , Ad be commuting automorphisms of a compact abelian
group X with Haar measure µ. Assume that the algebraic Zd-action they generate
is Noetherian, and that µ({x ∈ X : Ai(x) = Aj(x)}) = 0 for all i 6= j. Let
Yd = {1, . . . , d}Z and Td be the d-shift on Yd. Define s : Yd → Zd by s(y) = ey0 .
Then

e(A1, . . . , Ad) = h(Td ×s α),
where the right side is computed according to Theorem 11.2.

Proof. Define φ : Yd ×s X → X(RA1,...,Ad) by

φ(y, x) =
(
x,Ay0(x), Ay1Ay0(x), Ay2Ay1Ay0(x), . . .

)
.

Clearly φ is continuous, surjective, and intertwines Td ×s α with the shift on
X(RA1,...,Ad). Therefore e(A1, . . . , Ad) 6 h(Td ×s α).

To prove the reverse inequality, recall that since Td is a shift of finite type, Td×sα
has a measure of maximal entropy of the form ν×µ. We claim that φ is one-to-one
on a set of full ν×µ measure. Suppose that φ(y, x) = φ(y′, x′) with (y, x) 6= (y′, x′).
By definition of φ we have x = x′. Choose n minimal so that yn 6= y′n. Then

Ayn
(
Ayn−1 · · ·Ay0(x)

)
= Ay′n

(
Ayn−1 · · ·Ay0(x)

)
,

so that
x ∈ A−1

y0
A−1
y1
· · ·A−1

yn−1
(kerA−1

ynAy′n).

But µ(kerA−1
ynAy′n) = 0 by hypothesis, and so x lies is a countable union of µ-null

sets, verifying our claim. Therefore

h(Td ×s α) = hν×µ(Td ×s α) = hφ∗(ν×µ)(σX(RA1,...,Ad ))

6 h(σX(RA1,...,Ad )) = e(A1, . . . , Ad),

completing the proof. �
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We remark that some condition about distinctness of the Aj is needed. For
example, if A1 = A2 = A, then e(A,A) = h(A), while h(T2 ×s α) = h(A) + log 2.
The discrepancy arises here because the map φ of the proof is no longer essentially
one-to-one.

Examples 12.2. (1) Let Z = T, A be multiplication by p, and B be multiplication
by q 6= p. Here the local fields are Qp, Qq, and Q∞ = R, with corresponding
Lyapunov vectors for the generated Z2-action being (− log p, 0), (0,− log q), and
(log p, log q). Theorem 12.1 then shows that e(A,B) = log(p + q), agreeing with
Theorem 2 of [9].

(2) Let A and B be commuting automorphisms of Tr, and suppose for simplicity
that all eigenvalues are real, say they are ξj and ηj on the jth eigenspace. Then
the Lyapunov vectors for the Z2-action they generate are (log |ξj |, log |ηj |), and so
by Example 11.3 we see that

e(A,B) = max
E⊂{1,...,r}

log
(∏
j∈E
|ξj |+

∏
j∈E
|ηj |
)
.

This shows that the formula conjectured by Geller and Pollicott in [9, 5(3)] is not
correct.

(3) Let α be the Ledrappier Z2 action from Example 6.8, and A = αe1 , B = αe2 .
Here the Lyapunov vectors are (log 2, 0), (0, log 2), and (− log 2,− log 2). Hence by
Theorem 12.1, we find that e(A,B) = log 4, not the value log(2 +

√
2) reported

in [9, Sec. 3]. Unfortunately, this means that their claim that e can be used to
differentiate between Ledrappier-type examples defined using shapes with the same
convex hull is not correct. In particular, Theorem 3 of [9] is false.
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