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ERGODIC GROUP AUTOMORPHISMS AND SPECIFICATION

D. A. Lind
University of Washington
Seattle, Washington 98195

Dedicated to the memory of Rufus Bowen

§1. Introduction.

I first want to discuss how I became interested in finding out which ergodic
automorphisms of compact groups satisfy a property called specification, and then
describe the answer for ergodic toral automorphisms. This settles a question
raised by Sigmund [15, §2]. One consequence of the answer is that Markov
partitions, such as those found by Adler and Weiss [1] for two-dimensional toral
automorphisms and by Bowen [3] for hyperbolic toral automorphisms, cannot be con-
structed for nonhyperbonlic automorphisms. There seem to be essential differences
between the dynamic behavior of hyperbolic and nonhyperbolic automorphisms. Some
questions that can be answered in the hyperbolic case using the Markov partition
machinery, e.g. concerning the distribution of periodic orbits, remain open for

nonhyperbolic toral automorphisms.

§2. Splitting skew products.

When dealing with the ergodic properties of group automorphisms, transfor-
mations of the following form often arise. Let U:X +- X be an invertible
measure-preserving transformation (hereafter shortened to ''map') of a Lebesque
space (X,4), S:G~-> G be a (continuous, algebraic) automorphism of a compact
metrizable group G written additively, and a:X + G be a measuréﬁle function.
Form the skew product U Xa S:X X G+ X X G defined by (U Xa S)(x, g) = (Ux,
Sg + a(x)). Such skew products arise, for example, when there is a closed sub-

group H of G that is invariant under S. For by taking a Borel cross-section



to the projection G = G/H, the automorphism S can be written as the skew pro-

with the restriction S, of S to H (see

duct of the factor automorphism SG/H u

[8, p. 209] for details).

While investigating the Bernoullicity of group automorphisms in [8], I
noticed that by using Thouvenct's relative isomorphism theory one could show that
skew produqts with ergodic group automorphisms are always isomorphic to direct
products, via an isomorphism that preserves the group fibers. This means that

there is a map W:X X G+ X X G of the form W(x,g) = (x, Wx(g)) such that
(1) (U x SW =W x 8).

Unfortunately, Thouvenot's theory gives no information about the individual maps
WX:G -+ G. Demanding that they be group translations, i.e. Wx(g) = g+ B(x),

when substituted into (1), amounts to solving the functional equation
(2) a(x) = B(Ux) - SB(x),

where o, U, and S are known, and the measurable function RB:X - G is to be

found. It turns out that this is always possible.

Splitting Theorem [9]. If S 1is an ergodic group automorphism, then for

arbitrary o and U the functional equation (2) can be solved for B.

One application of this result is the simplest proof so far of Katznelson's
result [7] that ergodic toral automorphisms are Bernoulli (see [9, §5]), one
that avoids the Diophantine approximation arguments used in previous proofs.
Other applications are mentioned in [9, 81].

Bowen's property "specification'" plays a key role in the proof of the
Splitting Theorem given in [9], so let me first review this property, and then
indicate its use.

Let (Y,d) be a compact metric space, and £f:Y + Y be continuous. The

transformation f obeys specification if for every € > o there is an M(g)

such that for every r 2 2 and r points MR RN €Y, and for every set of



integers a, < b, <a, < b, < eee < a_ < br and p with a; - b, > M(e) (2 < i

1 1 2 2 i-1
<r) and p 2 br -3 + M(€), there is a point yeY with d(fny, fnyi) < g for
a, <n<b,, 1<1ic<r, and with fp(y) = y. Basically this definition means that

i i
given specified pieces {fnyi:ai <n < bi} of orbits of different points for dis-
joint blocks of times, if there is enough space between these blocks then these
pieces can be well approximated during the same time blocks by the orbit of a
single periodic point.

Several important dynamical systems obey specification, including hyperbolic
toral automorphisms and subshifts of finite type (see [5, Ch. 21]). Bowen intro-
duced this property to produce the unique equilibrium measure for an Axiom A
diffeomorphism [3, Ch. 4] and to construct Markov partitions for such diffeo-
morphisms [3, Ch. 3]. Sigmund [12], [13], [14], [15] and Kamae [6] have used
variants of specification to study orbits and generic properties of invariant
measures to generalize number-theoretic facts about decimal expansions.

Actually, solving (2) involves only the orbit copying part of specification.

Hence say that f:Y - Y obeys weak specification if it satisfies the definition

of specification except for the periodic point condition fp(y) = y. Weak
specification was used by Ruelle [11l] in studying the statistical mechanics of
lattice actioms.

Let me now sketch how to solve the functional equation (2) for those
automorphisms S obeying weak specification. Let S be an ergodic automorphism
of a compact abelian group G, and equip G with a translation invariant metric
p. Suppose that S satisfies weak specification on (G, p). Let U:X > X and

o:X > G be measurable. I will find B by constructing approximating solutions

Bk defined on successively larger parts of X.
To begin, choose positive Ek with I € < o ., Let M(El) be given by
the weak specification property of S, and choose an integer h1 so that
< . i i +
M(El)/h1 € Let Fl c X be a Rohlin base for U of height hl\ M(El),

and let E) = {UJFl: 0< j < hl}. The base F

1-3 Ei' Define B

; can be chosen so that U(El) >

arbitrarily but measurably on F The functional equation

1 1
(2) forces the definition of Bl inductively up the stack. Specifically, for



x € F,,

Bl(Ux) SBl(X) + a(x) ,

Bl(sz) S8, (Ux) + o (Ux)

SZBl(x) + Sa(x) + a(Ux),

and in general

J _ o : .
Bl(U x) =S Bl(x) + aj(x) (x € Fl, 0<j< hl)
where -1
@ (x) = 3 s a™.
J m=0

This defines B on the stack El’ and it satisfies (2) on all but the top level.

1

E,, where h is

Similarly, for the given €, > 0, find M(Ez), h2, F2, 9 9

2

much larger than h Now comes the essential point. Once B, is defined at

1° 2
X € F2, its definition on the orbit piece {UJX: 0< j< hz] is forced by (2).
However, Bl is already defined on certain subpieces of this piece, namely the
blocks of time when the orbit of x is in El. It may not be possible to select

a value for Bz(x) so that on the subpieces of the orbit where B8 is already

1

defined, B will agree with, or even be close to, to previous function B8

2 1

The role of specification is to show that such a selection is possible.
Suppose I let Bé(x) =8 and see what the trouble is. Now Bl is already
defined on certain subpieces, say {Unx:ai_s n <b.,1 £i =<r}, where b =a +
i i i

hl’ and by construction a41 ~ bi 2 M(el). The definition of Bé on

gaps of at least M(E )

[ ny > [T n) [ b, i [ Py > |



those pieces is forced:

ai+j ai+j
1 i
82(U X) S 8, + aai+j (x)
for 1 £1=<r, 0<3j< hl. Also,
a.+j . ai a,
B, (U S stl(u x) + a,U tx).
J
Since
a

ix) = Sja (x),
a,

a .(x) - a.(U
a,+3( ) J( .

subtraction gives

a.tj a,+j a

x) - B U Tw) = s 1

g, (U

a.
> g, ~ B (U )+ (0]

i
Since the bracketed expression is independent of j, the error on the subpiece
{Unx:ai <n < bi} is the orbit of the point in brackets, different points for
different i. The time gaps between these subpieces are at least M(g), so weak
specification can be used to adjust our original choice of Bé(x) to decrease
these errors to be uniformly less than €- For by weak specification, there is

a g ¢ G such that

a_ +j
iJ

a, a,
g, - B U +a (0]) < g
i

J

for 0 <j <h,, 1<4ic<r. Define BZ(X) = Bé(x) - 8- Then it is easy to check

l’
using translation invariance of p that if 82 is defined up the stack using

(2), then p(BZ(Unx), Bl(Unx)) < &. whenever U" x ¢ E 0 <n<h

1 1’ 2°

Thus 62 is defined on more of X, solves (2) where defined, and is uniformly
close to Bl where the latter is defined.
Similarly, construct Bk defined on Ek with u(Ek) -+ 1, such that Bk

solves (2) where defined, and such that B8 and Bk are within € on E

k+1 k k®

Since X g, < o {Bk} is almost uniformly Cauchy, so converges to a measurable

k

function B defined almost everywhere on X which solves (2). Details of this

argument are in [9, §4].



§3. Specification.

If every ergodic group automorphism satisfied weak specification, then the
simple argument in §2 would be all that is needed to solve (2). A general ergodic
automorphism can be built up from certain basic automorphisms that do satisfy weak
specifigation by using factors, products, inverse limits, and extensions by basic
automorphisms (see [9, §7]). All but the last process preserve weak specification.
Unfortunately, there are extensions of homeomorphisms obeying weak specification
by a basic automorphism that do not obey weak specification. 1In fact, a toral
automorphism S' is given below having an invariant subgroup H such that both

and S obey weak specification, but S' does not.

Se/m H

Hence at least some of the complication in [9] of solving (2) for a general
ergodic group automorphism seems intrinsic to the specification approach. Dan
Rudolph [10] has found another way of solving (2) by using a relativised iso-
mcrphism theorem for measure-preserving actions of a skew product of the integers
with a compact group.

Which group automorphisms obey specification?

The shift whose state space is a finite group certainly does, and I believe
so do all ergodic automorphisms of totally disconnected compact abelian groups.
This is true in many cases, but I have not yet found a general proof.

However, for ergodic toral automorphisms there is a complete answer. Such
automorphisms come in three flavors, depending on the spectral properties of the
associated linear map.

(1) Hyperbolic automorphisms have no eigenvalues on the unit circle (i.e.

no unitary eigenvalues).

(2) Central spin automorphisms have some unitary eigenvalues, and on the

eigenspace of the unitary eigenvalues the associated linear map is an isometry
(with an appropriate metric); this means that the Jordan blocks for the unitary
eigenvalues have no off-diagonal 1's.

(3) Central skew automorphisms are what's left, namely those with off-

diagonal 1's in the Jordan block of some unitary eigenvalue.



Central spin and central skew automorphisms occur. Let

S =
0O 0 0 1
-1 -4 2 -4
The eigenvalues for S are v2 - 1 + i v2 /2 - 2 (both unitary), and - v2 - 1 #

2 V2 + 2 (= ~4.61, -0.21). Hence S is a central spin automorphism. Dimension
4 is least possible for such an automorphism. Also, if I denotes the 4 x 4
identity matrix, then

S I

s' =

0 S
is a central skew automorphism. Dimension 8 is least possible for such an auto-
morphism.

The specification behavior of each of these classes is different.

Theorem. (i) Hyperbolic automorphisms obey specification.
(ii) Central spin automorphisms obey weak specification, but never obey
specification.

(iii) Central skew automorphisms never obey even weak specification.

Part (i) is due to Bowen [2]. The first part of (ii) is proved in [9] as
part of the general solution to (2). In the next two sections I briefly indicate

the geometric ideas behind (iii) and the negative part of (ii).

§4. Central skew automorphisms.

d
Let S be a central skew automorphism of the d-dimensional torus T =~ =

R@/Z!d, and denote its lifting to a linear map of Rd by the same symbol.

Denote by ES, Eu, EC B@ the stable, unstable, and central subspaces of S
corresponding to the eigenvalues of S inside, outside, and on the unit circle,

respectively. Then Rd = g° @EC@Eu. It is not dangerous to identify these



d
subspaces with their projections tn Tl = since by ergodicity of S they are dis-
d
joint from Z .

Since S 1is central skew, there are disjoint 2-dimensional subspaces ES

1
and E; of E° such that the restriction of S to E; &BES has the form
Q I
’
0 Q

where Q 1is a rotation and I is the 2 X 2 identity matrix. For example, in the

central skew automorphism S' given in §3,

V2 -1 V2 J2 - 2

-2 /2 - 2 V2 -1

with respect to an appropriate basis. EC could be larger than Ei ﬂ}E;. Note
. J c c .

that the matrix of S$° on E; ) E, fis

.~J-1

3’

(3)
0 Qj

. . d . . . .

For convenience, give TI~ a translation-invariant product matric p

inherited from the eigenspaces, and let BS(E) denote the ¢€-ball around O 1in

the stable subspace projected to Trd), and similarly define Bu(e), Bc(e), B(g)

(for details, see [9, §6]).

Note that u € TTd stays within € of t € TTd under the first n
iterates of S precisely when u-t stays within € of O. Hence it is important

to analyse

J
{t e TTd:p(S t, 0) < e for 0 < j < n}

n
n

A(n,€)

s 3B (e)

j=0

A% (e,n) @ A (e,n) @Au(e,n) ,

where As(e,n) = n?= s™J Bs(e), etc.

j=0

Since S_1 expands on Es, A%(e,n) is "essentially" Bs(e), i.e. There are

absolute constants K1 and K2 independent of € and n such that KlBs(E) c



A%(e,n) < KZBS(E).
P u " . " -n,u
Similarly, A (e,n) is "essentially S B (g).
For the central direction, let ti € E;, so t1€B t2 € ECEB‘EZ. Then from
1
(3),

h| _ i c~J-1 b
S (tléB t)) = (Qt; +3Q t2)€B<2 t,

Since this is to be within € of O for 0 < j <n, and Q 4is an isometry,
clearly p(tl, 0) < g, p(tZ,O) < g€, and p(thl + ij_ltz, 0) < €. The last
inequality forces p(tz, 0) < 2e/j, so in particular p(tz, 0) < 2e/n. This
thinness is one eigendirection, decreasing with n, is the key geometrical fact
in the proof.

These observations are enough to show that S does not obey weak specifi-

cation. Fix an € > O small enough so that the projection of B(5g) c R@ to Trd
is injective. Let M > O be given. I will find tl, t2 € ﬂ'd and integers
d k| J
= < < < - =
0 a; bl a, b2 with a, bl M such that no t e T has p(S°t, S ti)
< <j < i = .
e for ai j b2, i 1, 2

The intersection SMBu(e) n [BS(SE)GB'BC(SE)] is finite, say {Sl, RN Sr}.
For n sufficiently large, the projection P of U§=l {B;(E/n) + si} to B;(SE)
cannot cover all of B;(SE). For such an n, choose an element u € B;(SE) and
an integer m such that u + B;(E/m) is disjoint from P.

Now let t1 = 0, t2 =u, a; = 0, bl =mn, a, =n + M, and b2 = a, + m.

Suppose there were a t € de with p(SJt, SJti) < e for a; < 3j

IA

b.. Then
i

t € A(e,n) and Sn+M t e u+ A(e,m). Hence

s s™ Ace,n)] 0 [u + ACe,m)]

Since the component of A(e,n) in the E; direction is Bg(e/n), the projection
c
to BZ(SE) of the first term in this intersection is contained in P, while that

of the second is by construction disjoint from P. This contradiction completes

the argument.



§5. Central spin automorphisms.

Central spin automorphisms obey weak specification [9, §6], but the argument
here shows that they never obey specification. In fact, if S is such an auto-
morphism of ﬂ'd, then all sufficiently small € > 0 will have the property that
for every M > 0 there are t_ € ﬂ'd and n > 0 such that no t € ﬂ'd has

1
p(SJt, SJtl) <eg for -n<t <0 and Sn+Mt

t. This will contradict the

specification definition for r =1, a -n, b, = 0, and p = n + M.

1

Since S has a central spin factor with irreducible characteristic poly-

l:

nomial, and specification is preserved under factors, assume that S has
irreducible characteristic polynomial. The purpose of this is to guarentee that
d

(ES &b EYY n2z° = {0} , which follows from irreducibility because then S cannot
preserve a nontrivial lattice.

Choose € > 0 as small as in 84. Let t1 e EY such that p(tl, 0) = 2e.

Since S 1is central spin, its restriction to the central subspace EC is
an isometry, say Q. Hence the identity on E° can be arbitrarily well approxi-
mated by arbitrarily large powers of Q.

M _u S c . .
Now {S [B (g) + tl]} n {B°(5e) @B (5¢)} is finite, say {sl, see, sr}.
X M. _u s u d . .
Since O ¢ S [B (g) + tl], and (EE @ E) nZ = {0}, the projection of Si> "t
s, to BC(SE) are all displaced at least some quantity 6 > 0 from 0. Choose
ntM . . c .
n so that Q is so close to the identity that for every s € B (5e) with
n+M . . c

p(s,0) 2 8, the map uw» s + Q u has no fixed points u € B (5¢).

Suppose there were a t € TTd with p(SJt, Sjtl) < g for -n<j <0 and
Sn+M t =t. If u denotes the projection of st to BC(SS), then the pro-
jection of SMt = Sn+M (S-nt) to BC(SE) has the form si + Qn+Mu for some 1.
Since S—nt = SMt, their projections u and s + Qn+Mu must agree. But

s, + Qn+M

p(si, 0) 2 6, so there are no fixed points of the map u#r u for u e

c .
B (5€), showing that such a t does not exist.

§6. Remarks.
Nonhyperbolic toral automorphisms seem to behave differently from the

hyperbolic ones. For example, a modification of the geometric ideas here shows



that for nonhyperbolic automorphisms, every fine enough partition is not weak
Bernoulli, although every partition is very weak Bernoulli since the automorphism
is a Bernoulli shift. This should be contrasted with Bowen's result [4] that for
hyperbolic automorphisms every smooth partition is weak Bernoulli. The geometry
also shows clearly certain limits to independence that forced Katznelson [7] to
introduce the intermediate idea of "almost weak Bernoulli' in the first proof that
ergodic toral automorphisms are Bernoulli. Details concerning these remarks will
appear elsewhere.

It follows from the theorem in 83 that Markov partitions in the sense of
Bowen [3] do not exist for nonhyperbolic toral automorphisms. For the existence
of a Markov partition would imply that the automorphism is a factor of a Markov
shift. Such shifts obey specification, and specification is trivially preserved
under factors.

Thus nonhyperbolic toral automorphisms are examples of smooth systems for
which the usual machinery of Markov partitions is unavailable, but which still
can be analysed in detail. Yet many questions about them, which can be answered
in the hyperbolic case, remain unsettled. Sample: Are the periodic orbit
measures weakly dense in the space of invariant measures? In particular, is there
a sequence of periodic orbits that converges weakly to Lebesgue measure, i.e. is

uniformly distributed? Nobody seems to know.
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