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Abstract. A general framework for investigating topological actions of Zd on compact
metric spaces was proposed by Boyle and Lind in terms of expansive behavior along lower-
dimensional subspaces of Rd . Here we completely describe this expansive behavior for
the class of algebraic Zd -actions given by commuting automorphisms of compact abelian
groups. The description uses the logarithmic image of an algebraic variety together with a
directional version of Noetherian modules over the ring of Laurent polynomials in several
commuting variables.

We introduce two notions of rank for topological Zd -actions, and for algebraic
Zd -actions describe how they are related to each other and to Krull dimension. For a
linear subspace of Rd we define the group of points homoclinic to zero along the subspace,
and prove that this group is constant within an expansive component.

1. Introduction
Expansiveness is a multifaceted property that plays an important role throughout dynamics.
Let β be an action of Zd by homeomorphisms of a compact metric space (X, ρ). Then β
is called expansive if there is a δ > 0 such that if x and y are distinct points ofX then there
is an n ∈ Zd such that ρ(βnx, βny) > δ.

In [BL] the notion of expansiveness along a subset, and especially a subspace, of Rd

was introduced, by considering only those elements of Zd that lie within a given bounded
distance of the set. Let Gk denote the compact Grassmann manifold of k-dimensional
subspaces (or k-planes) in Rd , and Nk(β) be the set of those k-planes which are not
expansive for β. It was shown in [BL] that if X is infinite, then Nd−1(β) is a non-empty
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compact subset of Gd−1 that determines all other Nk(β) as follows: a k-plane is non-
expansive for β if and only if it is contained in some subspace in Nd−1(β).

Denote by Ek(β) the set of expansive k-planes for β, which is an open subset of Gk .
Various dynamical notions, such as entropy, can be defined along subspaces. The expansive
subdynamics philosophy advocated in [BL] proposes that many such properties should
be either constant or vary nicely within a connected component of Ek(β), but that they
should typically change abruptly when passing from one component to another, analogous
to a ‘phase transition’. Several examples of this philosophy in action are given in [BL].
In §9 we provide another by considering points homoclinic along subspaces. Thus a basic
starting point in the analysis of any topological Zd -action is to describe its expansive
subspaces, especially those of co-dimension one, since these determine the rest.

An algebraic Zd -action is an action α of Zd by (continuous) automorphisms of a
compact abelian group, which we assume to be metrizable. We will consistently use α
to denote an algebraic Zd -action and β for a general topological Zd -action. Such algebraic
actions have provided a rich source of examples and phenomena (see [S]). The purpose of
this paper is to completely determine the expansive subspaces for all algebraic Zd -actions.

In §2 we review the relevant ideas from [BL], and show that it is sufficient to use half-
spaces rather than (d − 1)-dimensional planes. The algebra we need is described in §3.
In §4 we develop our main result, Theorem 4.9, which describes expansive half-spaces in
terms of prime ideals. We give in §5 a number of examples that illustrate and motivate
our results from the previous section. In §6 we investigate the prime ideal case in more
detail, including an algorithm to compute the expansive set. We introduce two notions of
‘rank’ for a topological Zd -action in §7, and for algebraic Zd -actions show how they are
related to each other and to Krull dimension. In §8 we extend our basic results to lower-
dimensional subspaces of Rd . The homoclinic group along a subspace is defined in §9
and shown to be constant within an expansive component. This fact has some interesting
dynamical consequences.

2. Expansive subdynamics
Let (X, ρ) be a compact metric space, which we assume is infinite unless otherwise stated.
A Zd -action β on X is a homomorphism from Zd to the group of homeomorphisms of X.
For n ∈ Zd we denote the corresponding homeomorphism by βn, so that βm◦βn = βm+n,
and β0 is the identity on X. For a subset F of Rd put

ρFβ (x, y) = sup{ρ(βn(x), βn(y)) : n ∈ F ∩ Zd },
and if F ∩ Zd = ∅ define ρFβ (x, y) = 0.

Definition 2.1. A Zd -action β on (X, ρ) is expansive provided there is a δ > 0 such that
ρR

d

β (x, y) ≤ δ implies that x = y. In this case δ is called an expansive constant for β.

Let ‖ · ‖ denote the Euclidean norm on Rd . For F ⊂ Rd and x ∈ Rd define
dist(x, F ) = inf{‖x − y‖ : y ∈ F }. For t > 0 put F t = {x ∈ Rd : dist(x, F ) ≤ t},
so that F t is the result of thickening F by t .
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Definition 2.2. Let β be a Zd -action on (X, ρ) and F be a subset of Rd . Then F is
expansive for β, or β is expansive along F , if there are ε > 0 and t > 0 such that
ρF

t

β (x, y) ≤ ε implies that x = y. If F fails to meet this condition it is non-expansive for
β, or β is non-expansive along F .

Remark 2.3. Every subset of a non-expansive set for β is clearly also non-expansive for β.
Every translate of an expansive set is expansive [BL, p. 57]. In the above definition we can
take for ε a fixed expansive constant for β [BL, Lemma 2.3].

Next we examine subsets F that are linear subspaces of Rd . Let Gk = Gd,k denote the
Grassmann manifold of k-dimensional subspaces (or simply k-planes) of Rd . Recall that
Gk is a compact manifold of dimension k(d−k) whose topology is given by declaring two
subspaces to be close if their intersections with the unit sphere are close in the Hausdorff
metric. A k-plane and its (d − k)-dimensional orthogonal complement determine each
other, giving a natural homeomorphism between Gk and Gd−k .

Definition 2.4. For a Zd -action β define

Ek(β) = {V ∈ Gk : V is expansive for β},
Nk(β) = {V ∈ Gk : V is non-expansive for β}.

An expansive component of k-planes for β is a connected component of Ek(β).

Example 2.5. (Ledrappier’s example) Take d = 2,

X = {x ∈ (Z/2Z)Z
2 : xi,j + xi+1,j + xi,j+1 ≡ 0 (mod 2) for all i, j },

and let β be the Z2-action generated by the horizontal and vertical shifts. If L is a line
that is not parallel to one of the sides of the unit simplex in R2 and t ≥ 2, then for each
x ∈ X the coordinates of x within Lt determine all of x, so that L ∈ E1(β). On the other
hand, the three lines parallel to the sides of the simplex do not have this property, and they
comprise N1(β) (see [BL, Example 2.7] for details).

Simple coding arguments [BL, Lemma 3.4] show that each Ek(β) is an open subset
of Gk , so that each Nk(β) is compact. Hence expansive components of k-planes for β are
open subsets of Gk . By Remark 2.3, ifW is non-expansive for β and V is a subspace ofW ,
then V is also non-expansive for β. A basic result [BL, Theorem 3.6] is the converse: if V
is a non-expansive subspace for β of dimension less than or equal to d − 2, then there is a
non-expansive subspace for β containing V of one higher dimension. If X is infinite, then
the zero subspace is non-expansive, and hence inductively we see that each Nk(β) �= ∅ for
1 ≤ k ≤ d−1. Furthermore, it follows that if V ∈ Nk(β), then there is aW ∈ Nd−1(β) that
contains V . Hence Nk(β) consists of exactly all k-dimensional subspaces of the subspaces
in Nd−1(β). Thus Nd−1(β) determines the entire expansive subdynamics of β.

In order to treat algebraic Zd -actions, it is convenient to shift our viewpoint slightly and
use half-spaces in Rd rather than (d − 1)-planes. Let Sd−1 = {v ∈ Rd : ‖v‖ = 1} be the
unit (d − 1)-sphere. For v ∈ Sd−1 define Hv = {x ∈ Rd : x · v ≤ 0} to be the half-space
with outward unit normal v. Let Hd be the set of half-spaces in Rd , which we identify with
Sd−1 via the parametrization v ↔ Hv. For H ∈ Hd we denote its outward unit normal
vector by vH .
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Expansiveness along a half-space H is defined using Definition 2.4 with F = H .
Observe that thickeningHv by t > 0 results merely in the translationHv+ tv ofHv. Hence
there is no need to thicken half-spaces in the definition, and a Zd -action β is therefore
expansive along H if and only if there is an ε > 0 such that ρHβ (x, y) ≤ ε implies that
x = y.

Definition 2.6. For a Zd -action β define

E(β) = {H ∈ Hd : H is expansive for β},
N(β) = {H ∈ Hd : H is non-expansive for β}.

An expansive component of half-spaces for β is a connected component of E(β).

Remark 2.7. A coding argument analogous to [BL, Lemma 3.4] shows that E(β) is an
open set and so N(β) is a compact set.

The following lemma shows that a (d − 1)-plane is non-expansive for β if and only
if at least one of the two bounding half-spaces is also non-expansive for β. Thus if we
define π : Hd → Gd−1 by π(H) = ∂H , then π(N(β)) = Nd−1(β). This shows that the
half-space behavior N(β) determines the expansive subdynamics of β.

We start by recalling the following key notion from [BL, Definition 3.1].

Definition 2.8. Let β be an expansive Zd -action with expansive constant δ. For subsets E,
F of Rd we say that E codes F provided that, for every x ∈ Rd , if ρE+x

β (x, y) ≤ δ then

ρF+x
β (x, y) ≤ δ.

LEMMA 2.9. Let β be a Zd -action and V ∈ Gd−1. Then V ∈ Nd−1(β) if and only if there
is an H ∈ N(β) with ∂H = V .

Proof. IfH ∈ N(β), then by Remark 2.3 we see that V = ∂H ⊂ H is also non-expansive.
Conversely, let V ∈ Gd−1 and H = Hv, H ′ = H−v be the two half-spaces with

boundary V . Suppose that both H and H ′ are expansive for β. We prove that V is also
expansive for β, which will complete the proof.

Since β has an expansive half-space, it is an expansive action. Let δ > 0 be an
expansive constant for β. Let B(r) denote the ball of radius r in Rd , and [0, v] be the line
segment joining 0 to v. A ‘finite’ version of the expansiveness of H , entirely analogous to
[BL, Lemma 3.2], is that there is an r > 0 such thatH ∩B(r) codes [0, v]. Similarly, there
is an s > 0 such thatH ′∩B(s) codes [0,−v]. Hence if t = max{r, s}, then V t codes V t+1,
which by the same argument codes V t+2, and so on. Thus V t codes Rd , which means that
V is expansive. ✷

3. Algebraic Zd -actions
An algebraic Zd -action is an action of Zd by (continuous) automorphisms of a compact
abelian group. Such actions provide a rich class of examples of Zd -actions having striking
connections with commutative algebra. The monograph by Schmidt [S] provides a detailed
account of this theory. For background and standard results from commutative algebra used
below the reader may consult [E].
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LetX be a compact abelian group with identity element 0X. Suppose that α is an action
of Zd by automorphisms of X. Let M = X̂, the Pontryagin dual group of X. Define
Rd = Z[u±1

1 , . . . , u±1
d ], the ring of Laurent polynomials with integer coefficients in the d

commuting variables u1, . . . , ud . We can makeM into an Rd -module by defining uj ·m =
α̂ ej (m) for all m ∈ M , where ej ∈ Zd is the j th unit vector and α̂ ej is the automorphism
of M dual to αej . An element f ∈ Rd has the form f = f (u) = ∑

n∈Zd cf (n)un, where
the cf (n) ∈ Z and cf (n) = 0 for all but finitely many n ∈ Zd , and un = un1

1 . . . u
nd
d . Then

f ·m =∑
n∈Zd cf (n)̂α n(m) for every m ∈ M .

This process can be reversed. Suppose that M is an Rd -module. Let XM = M̂ be
its compact abelian dual group. Each uj is a unit in Rd , so the map γj defined by
γj (m) = uj · m is an automorphism of M . Define an algebraic Zd -action αM on XM
by α

ej
M = γ̂j . See [S, Ch. II] for further explanation and many examples.

Hence using duality we see there is a one-to-one correspondence between algebraic
Zd -actions on the one hand and Rd -modules on the other.

A module over an arbitrary ring is Noetherian if it satisfies the ascending chain condition
for submodules. The ring Rd is Noetherian as a module over itself. A prime ideal p ⊂ Rd
is associated with M if there is an m ∈ M with p = {f ∈ Rd : f · m = 0}. Let asc(M)
denote the set of prime ideals associated with an Rd -module M . If M is Noetherian, then
asc(M) is finite. One basic discovery has been that the dynamical properties of αM can
largely be determined from asc(M).

For example, let us describe when αM is expansive. In order to do so, we need some
notation. Let C denote the complex numbers and C× = C � {0}. For an ideal a in Rd put

V(a) = {z = (z1, . . . , zd ) ∈ (C×)d : f (z1, . . . , zd ) = 0 for all f ∈ a}
(we omit 0 from C since we are using Laurent polynomials). Let S = {z ∈ C : |z| = 1}
and Sd = {(z1, . . . , zd ) ∈ Cd : |z1| = · · · = |zd | = 1} be the multiplicative
d-torus. Then we have the following characterization of expansiveness due to Schmidt
(see [S, Theorem 6.5]), which can be thought of as a generalization of the fact that a toral
automorphism is expansive if and only if the associated integer matrix has no eigenvalue
in S.

THEOREM 3.1. Let M be an Rd -module. Then the following are equivalent:
(1) αM is expansive;
(2) M is Noetherian and αRd/p is expansive for every p ∈ asc(M);
(3) M is Noetherian and V(p) ∩ Sd = ∅ for every p ∈ asc(M).

Since the expansive subdynamics of a non-expansive action are trivial, we will consider
only Noetherian Rd -modules from now on. In particular, a Noetherian Rd -module M is
countable, and hence XM is metrizable. We fix a metric ρ on XM , which we may assume
to be translation-invariant. Observe that ρ(αn(x), αn(y)) = ρ(αn(x − y), αn(0X)) by our
assumption on ρ. Thus in considering the expansive behavior of an algebraic Zd -action on
a pair of points, we may assume that one of them is 0X.

Roughly speaking, non-expansiveness of αM can occur for two reasons: algebraic and
geometric. The algebraic reason occurs when M is not Noetherian: in this case there
is a decreasing sequence of closed, αM -invariant subgroups converging to {0X}, and this



1700 M. Einsiedler et al

immediately provides, for every δ > 0, a non-zero point that remains within δ of 0X under
all iterates of αM . The geometric reason occurs when V(p) ∩ Sd �= ∅: in this case it is
possible to use a element from V(p) ∩ Sd to construct points that remain arbitrarily close
to 0X under all iterates (see the proof of Theorem 4.9 for details). For a valuation-theoretic
approach to expansive behavior see [M].

4. Characterization of expansive half-spaces

Let M be an Rd -module and αM be the corresponding algebraic Zd -action. In this section
we characterize those half-spaces H ∈ Hd which are expansive for αM in terms of the
prime ideals associated with M . The main result, Theorem 4.9, is a ‘one-sided’ version
of Theorem 3.1. The reader is urged to consult the examples in §5 first to motivate what
follows in this section.

According to Theorem 3.1, there are two reasons that αM may fail to be expansive:
M may not be Noetherian, or there may be a point in V(p) ∩ Sd for some p ∈ asc(M).
In the following sequence of results we investigate a ‘one-sided’ version of each of these
possibilities. Our proofs closely parallel those in [S], with suitable modifications for their
one-sided nature.

We start with the Noetherian condition. ForH ∈ Hd , recall that vH denotes the outward
unit normal for H . Define HZ = H ∩ Zd . Put RH = Z[un : n ∈ HZ], which is a subring
of Rd . It is important to note that in general RH is not a Noetherian ring. Indeed, RH is
Noetherian exactly when vH is a rational direction in the sense that RvH ∩ Zd �= {0}, so
that RH is Noetherian for only countably many H . Understanding when an Rd -module is
Noetherian as an RH -module (i.e. when it is RH -Noetherian) is one of the key points in
our analysis.

LEMMA 4.1. LetM be a Noetherian Rd -module andH ∈ Hd . ThenM is RH -Noetherian
if and only if Rd/p is RH -Noetherian for every p ∈ asc(M).

Proof. Suppose that M is RH -Noetherian. If p ∈ asc(M), then there is an m ∈ M such
that Rd · m ∼= Rd/p. By definition, every RH -submodule of M is RH -Noetherian, and in
particular so is Rd ·m. Hence Rd/p is RH -Noetherian for every p ∈ asc(M).

Conversely, suppose that Rd/p is RH -Noetherian for every p ∈ asc(M). Since M is
Rd -Noetherian, there is a chain of Rd -submodules

0 = M0 ⊂M1 ⊂ · · · ⊂ Mr−1 ⊂Mr = M
withMj/Mj−1 ∼= Rd/qj for 1 ≤ j ≤ r , where each qj is a prime ideal in Rd that contains
some pj ∈ asc(M) [S, Corollary 6.2]. The surjection Rd/pj → Rd/qj shows that Rd/qj
is again RH -Noetherian. Recall the fact from module theory that over an arbitrary ring if
P ⊂ Q are modules, then Q is Noetherian if and only if both P andQ/P are Noetherian.
Repeated application of this fact shows successively thatM1,M2, . . . , and finallyMr = M
are RH -Noetherian. ✷

We will use twice the following variant of the ‘determinant trick,’ which for clarity we
state separately.
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LEMMA 4.2. Let R be a commutative ring with unit and M be an R-module generated
by b1, . . . , bk . Suppose that rij ∈ R for 1 ≤ i, j ≤ k are such that

∑k
j=1 rij bj = 0 for

1 ≤ i ≤ k. Then det[rij ] annihilates M.

Proof. Consider the matrix A = [rij ] acting on column vectors in Mk . If b ∈ Mk has
j th entry bj , then Ab = 0. Multiplying this equation by the adjugate matrix of A gives
(detA)b = 0. Hence (detA)bj = 0 for 1 ≤ j ≤ k, so that detA annihilates M. ✷

In order to show that expansiveness of αM along H implies that M is RH -Noetherian,
we need one further algebraic result. Recall that modules over Noetherian rings are
Noetherian exactly when they are finitely generated. This fails for non-Noetherian rings.
For example, if RH is non-Noetherian, then RH is finitely generated over itself (by 1), yet
the ideal Z[un : n·vH < 0] is not finitely generated overRH . Nevertheless, in our situation
there is a reasonable substitute.

LEMMA 4.3. Let M be an Rd -module and H ∈ Hd . Then M is RH -Noetherian if and
only if M is finitely generated over RH .

Proof. Noetherian modules over arbitrary rings are always finitely generated.
Conversely, suppose that M is finitely generated over RH , say by m1, . . . ,mr . Fix

k ∈ Zd �H . Since M is an Rd -module, we can find fij (u) ∈ RH such that

uk ·mj =
r∑
i=1

fij (u) ·mi.

If I denotes the r × r identity matrix and F = [fij (u)], then Lemma 4.2 shows that
det(ukI − F) annihilatesM . Multiplying this determinant by u−(r−1)k shows that there is
an element in Rd of the form uk − f (u), with f (u) ∈ RH , that annihilatesM .

Suppose that N is an RH -submodule of M . For every n ∈ N ⊂ M we have that
(uk − f (u)) · n = 0, so that uk · n = f (u) · n ∈ N . Hence N is closed under the subring
of Rd generated by RH and uk, which is all of Rd . Thus every RH -submodule of M is
also an Rd -submodule. Since M is finitely generated over RH , it is finitely generated over
Rd , henceM is Rd -Noetherian. It then follows that M is also RH -Noetherian (since every
RH -submodule is also an Rd -submodule). ✷

The proof of Lemma 4.3 also establishes the following useful result.

LEMMA 4.4. Let M be a Noetherian Rd -module, H ∈ Hd , and k ∈ Zd � H . Then M is
RH -Noetherian if and only if there is a polynomial of the form uk− f (u) with f (u) ∈ RH
that annihilatesM .

Remark 4.5. If M is a Noetherian Rd -module, Lemma 4.4 shows that {H ∈ Hd :
M is RH -Noetherian} is an open subset of Hd . To see this, suppose that M is
RH -Noetherian for some H ∈ Hd . Fix k ∈ Zd � H . Applying Lemma 4.4 with k
replaced by 2k, we see there is an f (u) ∈ RH such that u2k − f (u) annihilates M . Then
uk − u−kf (u) also annihilates M . For H ′ sufficiently close to H it follows that u−kf (u)

is also in RH ′ and that k ∈ Zd � H ′, and hence by another application of Lemma 4.4 we
find that M is RH ′ -Noetherian as well.
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LEMMA 4.6. Let M be an Rd -module and H ∈ Hd . If αM is expansive along H then M
is RH -Noetherian.

Proof. IfM is notRH -Noetherian, then by Lemma 4.3 it is not finitely generated overRH .
Hence there is a strictly increasing sequence of proper RH -submodules M1 � M2 � · · ·
with

⋃∞
j=1Mj = M . Let Xj = M⊥j ⊂ XM . Then each Xj is compact, X1 � X2 � · · · ,

and
⋂∞
j=1Xj = {0X}. Hence diam(Xj ) → 0. Furthermore, since Mj is an RH -module,

αn
M(Xj ) ⊂ Xj for every n ∈ HZ.

Let ε > 0. Choose j0 such that diam(Xj0) < ε, and pick 0 �= x ∈ Xj0 . Then
αn
M(x) ∈ Xj0 for all n ∈ HZ, so that sup{ρ(αn

M(x), 0X) : n ∈ HZ} < ε. Since ε was
arbitrary, we see that αM is not expansive along H . This contradiction proves that M is
RH -Noetherian. ✷

Next we turn to the one-sided version of the variety condition. Define log |z| for
z = (z1, . . . , zd) ∈ (C×)d by

log |z| = (log |z1|, . . . , log |zd |) ∈ Rd .

If a is an ideal in Rd , put

log |V(a)| = {log |z| : z ∈ V(a)} ⊂ Rd .

When a = 〈f 〉 is principal, the set log |V (a)| = log |V(f )| was investigated in
[GKZ, §6.1], where it is called the amoeba of f (turn to Figure 2 in §5 to see why). For
example, they show that the connected components of the complement of log |V(f )| are all
convex sets that are in one-to-one correspondence with the distinct domains of convergence
of Laurent expansions of 1/f .

For v ∈ Sd−1, let [0,∞)v = {tv : t ≥ 0} denote the ray in Rd through v.

PROPOSITION 4.7. Let a be an ideal in Rd and H ∈ Hd with outward unit normal vH .
Then αRd/a is expansive along H if and only if Rd/a is RH -Noetherian and [0,∞)vH ∩
log |V(a)| = ∅.

Proof. Let σ denote the Zd -shift action on TZ
d
, where (σ nx)m = xn+m. For f =∑

n∈Zd cf (n)un ∈ Rd put f (σ) = ∑
n∈Zd cf (n)σ n. Then XRd/a is the closed shift-

invariant subgroup of TZ
d

given by

XRd/a = {x ∈ TZ
d : f (σ)x = 0 for all f ∈ a}.

If f + a ∈ Rd/a and x ∈ XRd/a, the duality pairing is given by the formula

〈f, x〉 = exp[2πi(f (σ )x)0].
First suppose that αRd/a is expansive along H . Lemma 4.6 shows that Rd/a is

RH -Noetherian. If [0,∞)vH ∩ log |V(a)| �= ∅, choose z ∈ V(a) such that (log |z|) ·n ≤ 0

for all n ∈ HZ. Consider CZ
d

together with the Zd -shift action σ , and the point w ∈ CZ
d

defined by wn = zn = z
n1
1 · · · zndd . For every f ∈ Rd we have f (σ)(w) = f (z)w, and

so f (σ)(w) = 0 for all f ∈ a. Fix ε > 0. Then |εwn| = |εzn| ≤ ε for every n ∈ HZ.
Define x ∈ TZ

d
by xn = Re(εwn) (mod 1). Then clearly x �= 0, and |xn| ≤ ε for all
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n ∈ HZ. Since ε was arbitrary, this contradicts expansiveness of αRd/a along H . Hence
[0,∞)vH ∩ log |V(a)| = ∅.

Conversely, suppose that Rd/a is RH -Noetherian. Lemma 4.4 shows that there is a
polynomial g in a of the form g(u) = 1−∑

n∈G cg(n)un, where n ·vH < 0 for all n ∈ G.
Now a is finitely generated over Rd , say by f1, . . . , fr .

For h = ∑
n∈Zd ch(n)un ∈ Rd put ‖h‖ = ∑

n∈Zd |ch(n)|. Define ε = (10‖g‖ +
10

∑r
j=1 ‖fj‖)−1. For t ∈ T let |t| = min{|t − n| : n ∈ Z}. We will prove that if

x ∈ XRd/a and |xn| < ε for all n ∈ HZ, then x = 0, which will show that αRd/a is
expansive.

There are two cases to consider: (1) xn = 0 for all n ∈ HZ, and (2) xn �= 0 for some
n ∈ HZ.

In case (1), choose θ > 0 so that n · vH ≤ −θ for all n ∈ G. If k ∈ Zd with
0 < k·vH ≤ θ then (n+k)·vH ≤ 0 for n ∈ G. Now ukg(u) = uk−∑

n∈G cg(n)un+k ∈ a,
so that xk = ∑

n∈G cg(n)xn+k = 0 since xn+k = 0 for all n ∈ G by assumption. Hence
xk = 0 for all k with 0 < k · vH ≤ θ . Repeating this argument shows that xk = 0 if
k · vH ≤ 2θ , then if k · vH ≤ 3θ , and so on, which proves that x = 0.

We now turn to case (2). We will show that there is a point in [0,∞)vH ∩ log |V(a)|.
Consider the Banach space 5∞(HZ) of all bounded complex-valued functions on HZ.
For every n ∈ HZ the operator Un defined by (Unw)m = wm+n maps 5∞(HZ) to
itself, and clearly ‖Un‖ ≤ 1. For f = ∑

n∈HZ cf (n)u
n ∈ RH define the operator

f (U) =∑
n∈HZ cf (n)Un. Put

W = {w ∈ 5∞(HZ) : Umfj (U)w = 0 and Umg(U)w = 0

for 1 ≤ j ≤ r and all m ∈ HZ}.
Clearly W is closed and mapped to itself by Un for every n ∈ HZ. We claim that W is
non-trivial. For define w ∈ W by taking wn to be the unique number in (−ε, ε) for which
xn ≡ wn (mod 1). Since

1 = 〈umfj (u), x〉 = exp[2πi(σmfj (σ )x)0],
if follows that (σmfj (σ )w)0 = ∑

cfj (n)wm+n ∈ Z for all m ∈ HZ. Our size condition
on x coupled with umfj (u) ∈ RH shows that

∑
cfj (n)wm+n = 0 for 1 ≤ j ≤ r and

m ∈ HZ. The same argument works for g, proving that w is a non-zero element of W .
For each n ∈ HZ let Vn be the restriction of Un to W . Let A be the commutative

Banach algebra of bounded operators on W generated by {Vn : n ∈ HZ}. The theory of
commutative Banach algebras shows that there is a (non-zero) complex homomorphism
ω : A → C, and that |ω(V )| ≤ ‖V ‖ for all V ∈ A. Let an = ω(Vn) for all n ∈ HZ.
Then n �→ an is a homomorphism from the monoid HZ to the multiplicative monoid C.
It follows that there is z = (z1, . . . , zd ) ∈ Cd such that an = zn for all n ∈ HZ. Also,
fj (V ) = 0 on W , so applying ω shows that fj (z) = g(z) = 0.

We claim that zj �= 0 for 1 ≤ j ≤ d . Since ω �= 0, there is a k ∈ HZ such that
ak �= 0. Suppose that an = 0 for all n ∈ HZ with n · vH < 0. If m ∈ ∂H ∩ Zd , then
am =∑

n∈G cg(n)am+n = 0, so that a is also zero on HZ, a contradiction. Hence there is
an n ∈ HZ with n ·vH < 0 and an �= 0. It then follows from multiplicativity of the an that
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an �= 0 for all n ∈ HZ. Hence zj �= 0 for all j , and so z ∈ V(a). Finally, for all n ∈ HZ
we have that

|zn| = |an| = |ω(Vn)| ≤ ‖Vn‖ ≤ 1,

so that n · log |z| ≤ 0, proving that log |z| ∈ [0,∞)vH . ✷

We will need the following fact when dealing with general Rd -modules.

LEMMA 4.8. Let α be an algebraic Zd -action on X, Y be an α-invariant compact
subgroup of X, and H ∈ Hd . If αY and αX/Y are both expansive along H , then so is α.

Proof. The hypothesis shows that there is a neighborhood U of 0X in X such that⋂
n∈HZ α

n
X/Y (U + Y ) = {0X/Y } and

⋂
n∈HZ α

n
Y (U ∩ Y ) = {0X}. These imply that⋂

n∈HZ α
n(U) = {0X}, so that α is expansive. ✷

We are now ready to characterize the expansive half-spaces for algebraic Zd -actions.
First observe that by Theorem 3.1 if an Rd -module M is not Rd -Noetherian, then αM is
not expansive, and so all subsets of Rd are also non-expansive and we are done. Thus we
can assume the modules considered are Noetherian over Rd .

THEOREM 4.9. Let M be a Noetherian Rd -module, αM be the corresponding algebraic
Zd -action, and H ∈ Hd . Then the following are equivalent:
(1) αM is expansive along H ;
(2) αRd/p is expansive along H for every p ∈ asc(M);
(3) Rd/p is RH -Noetherian and [0,∞)vH ∩ log |V(p)| = ∅ for every p ∈ asc(M).

Proof. Proposition 4.7 shows that (2)⇔ (3).
(3)⇒ (1): There is a chain of Rd -submodules 0 = M0 ⊂ M1 ⊂ · · · ⊂ Mr = M such

that Mj/Mj−1 ∼= Rd/qj , where qj is a prime ideal in Rd containing some pj ∈ asc(M).
Since XRd/qj ⊂ XRd/pj , we see that αRd/qj is expansive along H . Put Xj = M⊥j ⊂ XM .
Then XM = X0 ⊃ X1 ⊃ · · ·Xr = 0, and Xj−1/Xj ∼= XRd/qj . Repeated application
of Lemma 4.8 shows successively that αXr−1 , αXr−2 , . . . , αX0 = αM are all expansive
along H .
(1) ⇒ (3): Suppose that αM is expansive along H . By Lemma 4.6, M is

RH -Noetherian, so that by Lemma 4.1 we have that Rd/p is RH -Noetherian for every
p ∈ asc(M).

Suppose that there is a p ∈ asc(M) for which [0,∞)vH ∩ log |V(p)| �= ∅. Fix z ∈ V(p)
with log |z| = tvH for some t ≥ 0. Consider C as an Rd -module using the action θ defined
by θn(ξ) = znξ for all ξ ∈ C. We will construct an Rd -homomorphismψ : M → C.

To construct ψ , first note that M is Rd -Noetherian by assumption, hence finitely
generated over Rd . Choose generators m1, m2, . . . ,mk , and define the surjective map
ζ : Rkd → M by ζ(f1, . . . , fk) = f1·m1+· · ·+fk·mk . LetK = ker ζ . Define φ : Rkd → Ck

by φ(f1, . . . , fk) = (f1(z), . . . , fk(z)). We claim that the dimension of the complex
vector space generated by φ(K) is strictly less than k. For if not, there are elements
f(1) = (f

(1)
1 , . . . , f

(1)
k ), . . . , f(k) = (f

(k)
1 , . . . , f

(k)
k ) in K such that φ(f(1)), . . . , φ(f(k))

are linearly independent in Ck . Denote the k × k matrix [f (i)j ] by F . Since each f(i) ∈ K ,
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Lemma 4.2 shows that detF annihilatesM , and in particular detF ∈ p. Thus

0 = (detF)(z) = det[f (i)j (z)] = det[φ(f(1)), . . . , φ(f(k))],
contradicting linear independence of the φ(f(i)). This proves that φ(K) generates a proper
complex vector subspace L of Ck . Since φ(Rkd) generates all of Ck , it follows that the
corresponding quotient map φ̃ : M ∼= Rkd/K → Ck/L is non-zero. We can therefore
compose φ̃ with a projection of Ck/L to a 1-dimensional subspace so that the composition
is still a non-zero Rd -homomorphism. The result is the desired ψ : M → C.

By construction, ψ(fj · mj) = cjfj (z). After multiplying (if necessary) by a
constant we can assume that |cj | < ε and that the point x ∈ XM = M̂ defined by
x(un · mj) = exp[2πi Re(cj zn)] is not trivial. Since αn(x) is close to 0X for all n ∈ HZ,
the half-spaceH is not expansive. ✷

Remark 4.10. Roughly speaking, we can recover the statement (and proof) of Theorem 3.1
from the preceding theorem by using v = vH = 0. For then [0,∞)vH = {0}, so that
[0,∞)vH ∩ log |V(p)| = ∅ if and only if V(p) ∩ Sd = ∅, and Hv = {x ∈ Rd : x · v ≤
0} = Rd .

The content of Theorem 4.9 can be summarized by the equalities

E(αM) =
⋂

p∈asc(M)

E(αRd/p), N(αM) =
⋃

p∈asc(M)

N(αRd/p).

Our arguments would be substantially simplified if we knew that the converse of
Lemma 4.8 were true, namely that the quotient of an algebraic Zd -action that is expansive
along H is also expansive along H . Although this is correct, the only proof we know
makes full use of Theorem 4.9.

PROPOSITION 4.11. Let α be an algebraic Zd -action on X, Y be a compact α-invariant
subgroup ofX, andH ∈ Hd . Then α is expansive alongH if and only if both αY and αX/Y
are expansive alongH .

Proof. Lemma 4.8 proves one direction. For the other, suppose α is expansive along H .
Then trivially αY is expansive along H . Let N = Y⊥ ⊂ M , so that X/Y = XN . Now
asc(N) ⊂ asc(M), so Theorem 4.9 shows that αN = αX/Y is expansive along H . ✷

5. Examples
This section contains a number of examples to illustrate the above ideas. One noteworthy
feature is the elegant way in which the non-Noetherian and variety pieces of the non-
expansive set fit together.

Our examples involve three or fewer variables, so for notational simplicity we use u,
v, w, instead of u1, u2, u3. Using the correspondence Hd ↔ Sd−1 given by H ↔ vH ,
we identify subsets of Hd with the corresponding subsets of Sd−1 for ease of visualization.
Using this convention, for an ideal a ∈ Rd we put

Nn(αRd/a) = {v ∈ Sd−1 : Rd/a is not RHv-Noetherian},
Nv(αRd/a) = {v ∈ Sd−1 : [0,∞)v ∩ log |V(a)| �= ∅}.
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Observe that Nv(αRd/a) is the radial projection of log |V(a)| to Sd−1. By Proposition 4.7,

N(αRd/a) = Nn(αRd/a) ∪ Nv(αRd/a).

As before, in the case of a principal ideal 〈f 〉 in Rd we abbreviate V(〈f 〉) to V(f ).

Example 5.1. (One variable, principal ideal) Let 0 �= f (u) ∈ R1, which we assume is not
a unit in R1 (i.e. not±1 times a monomial). Multiplying f (u) by a monomial if necessary,
we can also assume that f (u) = cru

r + cr−1u
r−1 + · · · + c1u + c0, where cj ∈ Z and

crc0 �= 0. The unit ‘sphere’ in R is S0 = {1,−1}. By Lemma 4.4, 1 ∈ Nn(αR1/〈f 〉) if and
only if |cr | > 1. If |cr | = 1, then f (u) = ±∏r

j=1(u− λj ), so that
∏r
j=1 |λj | = |c0| ≥ 1.

Hence a = max1≤j≤r |λj | ≥ 1. If a = 1, then αR1/〈f 〉 is not expansive, and so trivially
1 ∈ N(αR1/〈f 〉). If a > 1, then [0,∞) · 1 ∩ log |V(f )| �= ∅, and so 1 ∈ Nv(αR1/〈f 〉).
In all cases we conclude that 1 ∈ N(αR1/〈f 〉). Similarly, −1 ∈ N(αR1/〈f 〉). Thus
N(αR1/〈f 〉) = S0.

The following polynomials illustrate some possible combinations of Nn and Nv:
(a) f (u) = u2 − u− 1, Nn = ∅ and Nv = {1,−1};
(b) f (u) = u− 2, Nn = {−1} and Nv = {1};
(c) f (u) = 2, Nn = {1,−1} and Nv = ∅;
(d) f (u) = 2u2 − 6u+ 3, Nn = {1,−1} and Nv = {1,−1}.
Remark 5.2. A result going back to the PhD thesis of Schwartzman shows that there are
no ‘one-sided expansive homeomorphisms’ except on finite spaces (see [BL, Theorem 3.9]
for a discussion). From this it follows that if α is an algebraic Z-action on an infinite group,
then N(α) = S0, providing an alternative approach to Example 5.1.

Example 5.3. (Two variables, principal ideal) Let f = ∑
cf (n)un ∈ R2. The Newton

polyhedron N (f ) of f is the convex hull of {n ∈ Z2 : cf (n) �= 0}. If N (f ) is a point
or line segment, then we are essentially reduced to Example 5.1, so we assume here that
N (f ) is 2-dimensional.

List the vertices of N (f ) as n1, n2, . . . ,nr , so that the line segment [nj ,nj+1] is an
edge of N (f ) (with the convention that nr+1 = n1). Let vj ∈ S1 denote the outward
unit normal vector to [nj ,nj+1]. If Aj denotes the open arc from vj−1 to vj , then S1 is
subdivided into the points vj and arcs Aj (see Figure 1). This subdivision of S1 represents
the ‘spherical dual polygon’ to N (f ), with vertices nj of N (f ) corresponding to edges
Aj , and edges [nj ,nj+1] in N (f ) corresponding to vertices vj .

By Lemma 4.4, each vj ∈ Nn(αR2/〈f 〉). If |cf (nj )| > 1, we also have that
Aj ⊂ Nn(αR2/〈f 〉). If |cf (nj )| = 1, then an argument using V(f ) similar to that in
Example 5.1 shows that Aj ⊂ Nv(αR2/〈f 〉). Hence in every case Aj ⊂ N(αR2/〈f 〉), so that
N(αR2/〈f 〉) = S1 (see [Sc] for a detailed treatment of this situation).

We examine two specific polynomials. To describe sets in S1 we use the notation
vθ = (cos θ, sin θ).
(a) Let f (u, v) = 3+u+v. Then Nn(αR2/〈f 〉) = {vθ : π ≤ θ ≤ 3π/2}∪{vπ/4}. The set

log |V(f )| is depicted in Figure 2(a), where the boundary curves are parameterized
by (log r, log |3 ± r|) for 0 < r < ∞. Projecting this set radially to S1 shows that
Nv(αR2/〈f 〉) = {vθ : −π/2 < θ < π}, and so N(αR2/〈f 〉) = S1.
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FIGURE 1. Newton polygon and its spherical dual.

FIGURE 2. Logarithmic images of two varieties.

(b) Let f (u, v) = 5 + u + u−1 + v + v−1. Then Nn(αR2/〈f 〉) consists of just the four
points on S1 corresponding to the four outward unit normals of N (f ). However,
log |V(f )|, shown in Figure 2(b), covers all directions, so that Nv(αR2/〈f 〉) = S1.

Example 5.4. (Three variables, principal ideal) Let f = ∑
cf (n)un ∈ R3, and N (f )

denote the Newton polyhedron of f . If N (f ) has dimension less than or equal to 2, then
we are reduced to either Example 5.1 or Example 5.3, so we will assume that N (f ) is
3-dimensional.

We form the ‘spherical dual polytope’ to N (f ) on S2 as follows. For each
2-dimensional face F of N (f ) let vF be the outward unit normal to F . If faces F and F ′
share a common edge e, draw a great circle arc Ae from vF to vF ′ . These arcs subdivide
S2 into open regions Bn corresponding to vertices n of N (f ) (see Figure 3).

By Lemma 4.4, each arc Ae ⊂ Nn(αR3/〈f 〉). If n is a vertex of N (f ) with |cf (n)| > 1,
then also Bn ⊂ Nn(αR3/〈f 〉). If |cf (n)| = 1, then Bn ∩ Nn(αR3/〈f 〉) = ∅, but an
analysis similar to the previous examples shows that Bn ⊂ Nv(αR3/〈f 〉). Again we find
that N(αR3/〈f 〉) fills out the entire sphere S2.

For the principal ideals considered so far we found that the non-expansive set is always
the whole sphere. This is true in general.

PROPOSITION 5.5. Let f ∈ Rd generate a proper ideal. Then N(αRd/〈f 〉) = Sd−1.



1708 M. Einsiedler et al

FIGURE 3. The Newton polytope and its spherical dual.

Proof. We could proceed along the lines of the previous examples, which is direct but
technically complicated. However, there is a short proof using the notion of a homoclinic
point (which is treated in detail in §9).

If V(f ) ∩ Sd �= ∅, then αRd/〈f 〉 is not expansive by Theorem 3.1, so that N(αRd/〈f 〉) =
Sd−1 and we are done. So we may suppose that V(f ) ∩ Sd = ∅. We represent XRd/〈f 〉
as {x ∈ TZ

d : ∑
n∈Zd cf (n)xm+n = 0 for all m ∈ Zd }, so that αRd/〈f 〉 is the shift-

action on XRd/〈f 〉. For t ∈ T let |t| = min{|t − n| : n ∈ Z}. A point x ∈ XRd/〈f 〉
is homoclinic if |xn| → 0 as ‖n‖ → ∞. Consider the function F on Sd defined by
F(s1, . . . , sd ) = f (s−1

1 , . . . , s−1
d ). Then F does not vanish on Sd by our assumption on

V(f ). Let (1/F )̂ (n) be the Fourier transform of 1/F at n ∈ Zd . Define x� by setting
x�n to be the reduction mod 1 of (1/F )̂ (n). By [LS, Lemma 4.5], x� ∈ XRd/〈f 〉, and
|x�n | → 0 as ‖n‖ → ∞ by the Riemann–Lebesgue lemma. Hence x� is a homoclinic
point.

Let v ∈ Sd−1 be arbitrary. Let H = Hv and let ε > 0. Choose r so that |x�n | < ε for
‖n‖ > r . Pick k ∈ Zd such that dist(k,H) > r , and put y = αk

Rd/〈f 〉(x
�). Then |yn| < ε

for all n ∈ HZ. Since ε was arbitrary, v ∈ N(αRd/〈f 〉) for every v ∈ Sd−1. ✷

We remark that a proof of the unoriented version of the previous result, namely that
Nd−1(αRd/〈f 〉) = Gd−1, can be given using entropy. For if h(αRd/〈f 〉) = 0, then f
is a product of generalized cyclotomic polynomials, and then αRd/〈f 〉 is not expansive.
If h(αRd/〈f 〉) > 0, then the entropy of αRd/〈f 〉 along every (d − 1)-plane is infinite, and so
no (d − 1)-plane can be expansive.

For non-principal prime ideals the non-expansive set can exhibit more variety.

Example 5.6. (Ledrappier’s example) We revisit Example 2.5. Let p = 〈2, 1 + u + v〉,
which is easily seen to be a prime ideal in R2. Then V(p) = ∅, so that Nv(αR2/p) = ∅.
On the other hand, the outward normals to the sides of the Newton polygon N (1+ u+ v)
are non-expansive, and by Lemma 4.4 these are the only non-expansive vectors. Thus
N(αR2/p) = {vπ/4, vπ , v3π/2}.
Example 5.7. (3-dimensional Ledrappier example) Let p = 〈2, 1+u+v+w〉, again easily
seen to be a prime ideal in R3. Then V(p) = ∅, so that Nv(αR3/p) = ∅. The non-expansive
set was determined in [BL, Example 2.9] to be the 1-skeleton of the spherical dual to the
Newton polytope N (1+u+v+w). This is depicted in Figure 4, where Nn(αR3/p) consists
of the six great circle arcs determined by the six edges of N (1+ u+ v + w).
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2

FIGURE 4. The non-expansive set for 3-dimensional Ledrappier.

2

(a) (b)

FIGURE 5. Non-expansive set for Example 5.8.

Example 5.8. (Non-expansive set with non-empty interior) Let d = 3 and p = 〈1 + u +
v,w − 2〉. We first prove that p is a prime ideal in R3.

Define φ : R3 → Z[t, 1/2t (t + 1)] by φ(f ) = f (t,−t − 1, 2). Clearly p ⊂ kerφ.
Observe that Z[t, 1/2t (t + 1)] is a subring of Q(t), hence an integral domain. Define
ψ : Z[t] → R3/p byψ(t) = u+p. Note that ψ(2t (t+1)) = 2u(u+1)+p = −uvw+p, a
unit in R3/p. Hence φ extends uniquely to Z[t, 1/2t (t+1)], and this extension is therefore
the inverse of the map R3/p → Z[t, 1/2t (t + 1)] induced by φ. Hence p = kerφ. Thus
R3/p is isomorphic to the integral domain Z[t, 1/2t (t+1)], so p is prime. (We are grateful
to Paul Smith for showing us this point of view.)

Next we determine Nv(αR3/p). Since V(p) = {(z,−z − 1, 2) : z ∈ C}, we see that
log |V(p)| lies in a plane at height log 2 above the origin, and in this plane it has the shape
shown in Figure 5(a), where the boundary curves are parameterized by (log r, log |r ± 1|)
for 0 < r <∞. When projected radially to S2, we obtain the set in the upper hemisphere
shown in Figure 5(b), with three cusps on the equator.

Finally, let us compute Nn(αR3/p). Using Lemma 4.4, the polynomialw− 2 ∈ p shows
that the open upper hemisphere in S2 is disjoint from Nn(αR3/p). Furthermore, 1+u+v ∈ p

shows that no points in the lower hemisphere are in Nn(αR3/p) either, with the possible
exceptions of those on the three quarter meridians shown in Figure 5(b). We will show
that each of these quarter meridians is contained in Nn(αR3/p), so that they, combined with
Nv(αR3/p) in the upper hemisphere, comprise all of N(αR3/p).
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We will treat the meridian from (0,−1, 0) to (0, 0,−1), the other two being similar.
Since Nn(αR3/p) is closed by Remark 4.5, it is enough to show that unit vectors in the
directions (0,−a,−b) are non-Noetherian, where a and b are positive integers. Let H ∈
H3 be {x ∈ R3 : x · (0, a, b) ≥ 0}. Using the isomorphism φ : R3/p→ Z[t, 1/2t (t + 1)]
above, the subring RH is mapped to Z[t±1, (−t − 1)m2n : am + bn ≥ 0]. Then
R3/p is Noetherian over RH if and only if Z[t, 1/2t (t + 1)] is finitely generated over
Z[t±1, (−t − 1)m2n : am+ bn ≥ 0]. By Lemma 4.4, this is clearly equivalent to whether
we can write 1 as a combination, using coefficients in Z[t±1], of expressions of the form
(−t − 1)m2n, where am+ bn > 0.

Suppose this to be the case, so that

1 =
∑

(m,n)∈F
fmn(t)(−t − 1)m2n, (5.1)

where fmn(t) ∈ Z[t±1] and F is a finite set of (m, n) ∈ Z2 for which am+ bn > 0. Let
| · |2 denote the extension of the 2-adic norm on Q to Q(21/b). Substitute t = 2a/b − 1 in
(5.1). Since |2a/b − 1|2 = 1, it follows that |fmn(2a/b − 1)|2 ≤ 1. Hence

1 = |1|2 =
∣∣∣∣ ∑
(m,n)∈F

fmn(2a/b − 1)(−2a/b)m2n
∣∣∣∣
2

≤ max
(m,n)∈F

|fmn(2a/b − 1)|2| − 2a/b|m2 |2|n2
≤ max
(m,n)∈F

2−(am+bn)/b < 1.

This contradiction shows that (5.1) is impossible, so that each rational direction
(0,−a,−b) is non-Noetherian. See also Example 8.6 for another approach.

Remark 5.9. In the previous example, and in many others, the non-Noetherian and variety
parts of the non-expansive set are ‘glued together’ along a set which can be described by the
asymptotic behavior of the logarithmic image of the variety. For instance, in Example 5.8,
the variety part Nv(αR3/p) in the upper hemisphere and the non-Noetherian part Nn(αR3/p)

in the lower hemisphere are glued together at the three cusp points on the equator, which are
also the three asymptotic directions of log |V(p)|. This illustrates a general phenomenon of
the logarithmic limit set of an algebraic variety, introduced by Bergman [B]. He showed
that this set is always contained in a finite union of lower-dimensional great spheres.
We point out that this set has an alternative description as the set of half-spaces H for
which (Rd/p)⊗ Q is not Noetherian over RH ⊗ Q, so in this sense is also a limiting part
of the non-Noetherian set (we are grateful to Bernd Sturmfels for pointing this out to us).

6. Further analysis of non-expansive sets
Let M be an Rd -module, which we will assume throughout this section to be Noetherian.
In §4 we showed that

N(αM) =
⋃

p∈asc(M)

N(αRd/p), (6.1)
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where

N(αRd/p) = Nn(αRd/p) ∪ Nv(αRd/p). (6.2)

In this section we refine our analysis of N(αM), showing that only isolated primes in
asc(M) are relevant. We provide an algorithm using Gröbner bases to compute Nn(αRd/a)

for ideals a in Rd , and show how this can be used to compute Nn(αM) using the Fitting
ideal of M . The question of when either Nn(αM) or Nv(αM) is empty is answered in
Proposition 6.9.

We begin by extending the definitions of Nn and Nv.

Definition 6.1. ForM a Noetherian Rd -module, define

Nn(αM) =
⋃

p∈asc(M)

Nn(αRd/p) and Nv(αM) =
⋃

p∈asc(M)

Nv(αRd/p). (6.3)

Hence by (6.1) and (6.2),

N(αM) = Nn(αM) ∪ Nv(αM). (6.4)

Remark 6.2. Alternatively, we could have defined Nn(αM) to be {H ∈ Hd : M is not
RH -Noetherian}. For M has a prime filtration 0 = M0 ⊂ M1 ⊂ · · · ⊂ Mr = M

with Mj/Mj−1 ∼= Rd/qj , where qj is a prime ideal containing some pj ∈ asc(M),
and furthermore every p ∈ asc(M) occurs as some qj [E, p. 93]. Then M fails to be
RH -Noetherian if and only if some quotientMj/Mj−1 is not RH -Noetherian, establishing
the equivalence of the two definitions of Nn(αM). Note that Remark 4.5 shows that Nn(αM)

is always closed.

Order asc(M) by inclusion, and let min(M) denote the subset of minimal elements of
asc(M). Members of min(M) are called the isolated primes forM . They play an essential
role in the primary decomposition ofM , and also govern the expansive subdynamics of αM .

PROPOSITION 6.3. Let M be a Noetherian Rd -module. Then

Nn(αM) =
⋃

p∈min(M)

Nn(αRd/p), Nv(αM) =
⋃

p∈min(M)

Nv(αRd/p), (6.5)

and so

N(αM) =
⋃

p∈min(M)

N(αRd/p).

Proof. Let q ∈ asc(M) and choose p ∈ min(M) with p ⊂ q. The natural surjection
Rd/p → Rd/q shows that, for every half-space H ∈ Hd , if Rd/q is not RH -Noetherian,
then Rd/p is not RH -Noetherian. Hence Nn(αRd/q) ⊂ Nn(αRd/p), establishing the first
equality in (6.5). For the second equality, observe that if p ⊂ q, then log |V(q)| ⊂
log |V(p)|. ✷

By (6.3) and (6.4), we can compute Nv(αM) as the union over all p ∈ asc(M) of
the radial projections of log |V(p)| to Sd−1. We next give two approaches to computing
Nn(αM). We first introduce some convenient terminology.
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Definition 6.4. Let f ∈ Rd and H = Hv ∈ Hd . The support of f is the set {n ∈ Zd :
cf (n) �= 0}. Say that f has an H -exposed vertex n if cf (n) �= 0 and m ·v < n ·v for every
m ∈ supp(f ) � {n}. If f has an H -exposed vertex n with cf (n) = 1, then f is called
H -monic.

Note that Lemma 4.4 shows that M is RH -Noetherian if and only if there is an
H -monic polynomial that annihilates M . In particular, if a is an ideal in Rd , then Rd/a is
RH -Noetherian if and only if a contains an H -monic polynomial. Observe that any factor
of an H -monic polynomial is ±1 times an H -monic polynomial.

We begin with principal ideals a = 〈f 〉. By the preceding paragraph, Rd/〈f 〉 is
RH -Noetherian if and only if f is H -monic. An obvious extension of terminology in
Example 5.4 then shows that Nn(αRd/〈f 〉) is the (d − 2)-skeleton of the spherical dual of
the Newton polyhedron N (f ) of f together with those (d − 1)-faces of the spherical dual
corresponding to vertices n of N (f ) for which |cf (n)| > 1.

Now suppose that a = 〈f1, . . . , fr 〉 ⊂ Rd . For H ∈ Hd it is tempting, but wrong, to
believe that a contains an H -monic polynomial if and only if one of the fj is H -monic.

Example 6.5. Let d = 2, f = u − 2, g = v − 3, and a = 〈f, g〉. Take v =
(−1/

√
2,−1/

√
2) ∈ S1 and H = Hv. Then neither f nor g is H -monic. However,

f − g = u− v + 1 ∈ a is H -monic.
Here Nn(αR2/〈f 〉) = {v ∈ S1 : v · e1 ≤ 0} and Nn(αR2/〈g〉) = {v ∈ S1 : v · e2 ≤ 0}, and

so the intersection of these is the quarter-circle of S1 in the third quadrant. However,

{−e1,−e2} = Nn(αR2/a) � Nn(αR2/〈f 〉) ∩ Nn(αR2/〈g〉).

Given an ideal a in Rd , we would like to compute a finite generating set F for a with the
property that if H ∈ Hd then a contains an H -monic polynomial if and only if F contains
an H -monic polynomial. For then

Nn(αRd/a) =
⋂
f∈F

Nn(αRd/〈f 〉),

where each term in the intersection has the description given above.
We compute such a set F using the theory of Gröbner bases [AL] and universal Gröbner

bases [St], which we now briefly summarize. Let N = {0, 1, 2, . . . }. The monomials
in Z[u1, . . . , ud ] correspond to elements n ∈ Nd via un ↔ n. A term order ≺ on
Z[u1, . . . , ud ] is a total order on Nd such that (1) 0 ≺ k for every 0 �= k ∈ Nd , and
(2) k ≺ m implies that k + n ≺ m + n for every k, m, n ∈ Nd . Fix a term order ≺. For
0 �= f ∈ Z[u1, . . . , ud ] let lt≺(f ) denote the unique leading term cf (n)un of f , where
n is maximal with respect to ≺ such that cf (n) �= 0. Let b be an ideal of Z[u1, . . . , ud ].
Then a finite set G ⊂ a is a Gröbner basis for b with respect to ≺ if for every f ∈ b there
is a g ∈ G for which lt≺(g) divides lt≺(f ) in Z[u1, . . . , ud ].

Although there are infinitely many term orders on Z[u1, . . . , ud ], it is shown in
[St, pp. 1–2] that every ideal has a universal Gröbner basis, i.e. a finite set that is a Gröbner
basis with respect to every term order. Although the proof in [St] is for the case when the
coefficients lie in a field, it is easy to adapt the argument to integer coefficients. Also, [St]
provides effective algorithms for computing a universal Gröbner basis.
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PROPOSITION 6.6. Let a be an ideal in Rd . Then there is an effectively computable finite
generating set F ⊂ a such that

Nn(αRd/a) =
⋂
f∈F

Nn(αRd/〈f 〉). (6.6)

Proof. The theory of Gröbner bases applies to polynomials rather than Laurent
polynomials. In order to apply it here, we will subdivide Zd into the 2d orthants
corresponding to the signs of the entries, and use a universal Gröbner basis in each of
these orthants.

Let D = {1, 2, . . . , d}. For each subset E ⊂ D define E(j) = 1 if j ∈ E and
E(j) = −1 if j /∈ E. Let SE = Z[uE(1)1 , . . . , u

E(d)
d ], and put aE = a ∩ SE , an ideal in

SE . For each E we will construct a finite set FE ⊂ aE , and show that F =⋃
E⊂D FE ⊂ a

satisfies (6.6).
For notational simplicity we give the construction for E = D, and indicate the

modifications needed for general E. Here SD = Z[u1, . . . , ud ]. Choose a finite set
{f1, . . . , fr } of generators for aD over SD . Let R = SD[t] = Z[u1, . . . , ud, t] and define

bD = 〈f1, . . . , fr , t − u1u2 . . . ud〉 ⊂ R
(for general E the last generator is t −∏

j u
E(j)
j ). Construct a universal Gröbner basisGD

for bD . Define φ : R → Rd by φ(uj ) = uj and φ(t) = u1u2 . . . ud (for general E let

φ(t) =∏
j u

E(j)
j ). Clearly φ(bD) = aD. Define FD = φ(GD).

We show that if v ≥ 0 and H = Hv, then there is an H -monic polynomial f in a if
and only if some element in FD is also H -monic. (For general vectors v, use the above
construction for E = {j : vj ≥ 0}.) First, multiply f by a monomial so that f ∈ aD ,
and also that the H -exposed vertex of f has the formN1, where 1 = (1, 1, . . . , 1). Hence
f = uN1 + h(u), where

n · v < (N1) · v for all n ∈ supp(h). (6.7)

Therefore tN + h(u) ∈ bD .
Define a term order on monomials in R = SD[t] by declaring that (k,K) ≺ (m,M) if

and only if (k + K1) · v ≤ (m +M1) · v, and in case of equality K ≥ M , and in case of
equality there, that k is lexicographically less than m. Then lt≺(tN + h(u)) = tN by (6.7).
Since GD is a Gröbner basis for ≺, there is a g ∈ GD with lt≺(g) dividing tN . Hence
lt≺(g) = tM for some M ≤ N . Let φ(g) = um + k(u) where φ(tM) = um. We claim that
φ(g) is a polynomial in FD that is H -monic. This follows since every monomial in g that
could give rise to a term in φ(g) strictly larger than m would have to already be greater
than tM with respect to ≺. ✷

To compute N(αM) for a general NoetherianRd -moduleM , we use the notion of Fitting
ideal f(M) to reduce to the situation of Proposition 6.6 (see [E, Ch. 20] or [L, §XIII.10]
for background). To define f(M), suppose that M is generated by m1, m2, . . . ,mr . Let
K ⊂ Rrd be the kernel of the map (f1, . . . , fr ) �→ f1m1 + · · · + frmr . Since K
is Noetherian, it is finitely generated over Rd , say by (a11, . . . , a1r ), . . . , (as1, . . . , asr).
Let A be the s × r matrix [aij ], so that M ∼= Rrd/(R

s
dA). Then f(M) is defined to
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be the ideal in Rd generated by all the r × r subdeterminants of A. This ideal is
independent of the presentation of M , and can be effectively computed (see [AL]). Also,
if ann(M) = {f ∈ Rd : f ·M = 0}, then

(ann(M))r ⊂ f(M) ⊂ ann(M) ⊂
⋂

p∈asc(M)

p. (6.8)

In [EW] it is shown that both entropy and expansiveness of αM can be computed from
f(M), although more subtle dynamical information requires higher order Fitting ideals.
The next result shows that both pieces of N(αM) can be found from f(M).

PROPOSITION 6.7. Let M be a Noetherian Rd -module and f(M) denote its Fitting ideal.
Then

Nn(αM) = Nn(αRd/f(M)), Nv(αM) = Nv(αRd/f(M)),

and so

N(αM) = N(αRd/f(M)).

Proof. Suppose that M is generated over Rd by r elements. Let H ∈ Hd , and suppose
that M is RH -Noetherian. By Lemma 4.4, there is an H -monic polynomial f ∈ ann(M).
Then (6.8) shows that f r ∈ f(M), and f r is clearly H -monic. Hence another application
of Lemma 4.4 implies that Rd/f(M) is H -Noetherian. Thus Nn(αRd/f(M)) ⊂ Nn(αM).
Conversely, suppose that Rd/f(M) is RH -Noetherian. Since f(M) ⊂ p for every p ∈
asc(M), we see that Rd/p is RH -Noetherian for every p ∈ asc(M). Hence

Nn(αM) =
⋃

p∈asc(M)

Nn(αRd/p) ⊂ Nn(αRd/f(M)),

proving that Nn(αM) = Nn(αRd/f(M)).
For the second equality, observe that since f(M) ⊂ p for every p ∈ asc(M),

Nv(αM) =
⋃

p∈asc(M)

Nv(αRd/p) ⊂ Nv(αRd/f(M)).

To prove the reverse inclusion, take Hv ∈ Nv(αRd/f(M)). Then there is a z ∈ V(f(M))
such that log |z| ∈ [0,∞)v. Suppose that z /∈ V(p) for every p ∈ asc(M). Then there are
polynomials gp ∈ p with gp(z) �= 0. Put g =∏

p∈asc(M) gp. Then g ∈⋂
p∈asc(M) p, and so

some power gk ∈ ann(M) (to see this, either use a prime filtration ofM , or observe that the
radical of ann(M) is

⋂
p∈asc(M) p). By (6.8) we see that (gk)r ∈ f(M). But this contradicts

gkr (z) =∏
p g

kr
p (z) �= 0. Hence there is a p ∈ asc(M) such that Hv ∈ Nv(αRd/p). ✷

Remark 6.8. The set Nn(αM) has been investigated in another context by Bieri and Groves
[BG] using a valuation-theoretic approach to the extension of characters on fields. More
specifically, they show in [BG, Thm. 8.1] how Nn(αM) can be calculated using such
characters. In [M] these ideas are used to give a purely valuation-theoretic description
of all of N(αM).
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Next, we characterize when Nn(αM) or Nv(αM) is empty. Note that the answers depend
only on the topological nature ofXM . If p is a prime ideal in Rd , we let char(Rd/p) denote
the characteristic of the integral domain Rd/p.

PROPOSITION 6.9. Let M be a Noetherian Rd -module.
(1) The following conditions are equivalent:

(a) Nn(αM) = ∅;
(b) M is finitely generated as an abelian group;
(c) XM is the direct product of a finite-dimensional torus and a finite abelian

group.
(2) The following conditions are equivalent:

(a) Nv(αM) = ∅;
(b) M is a torsion abelian group;
(c) XM is totally disconnected.

Proof. (1b)⇒ (1a): Suppose that M is finitely generated as an abelian group. Then M is
trivially RH -Noetherian for every H ∈ Hd , so that Nn(αM) = ∅ by Remark 6.2.

(1a)⇒ (1b): Our proof uses an algebraic analogue of the proof of Theorem 3.6 in [BL].
Since Nn(αM) = ∅, by Lemma 4.4 for every v ∈ Sd−1 there is a polynomial of the

form 1− f (u) = 1−∑
n∈F cf (n)un ∈ RHv that annihilatesM and such that n ·v < 0 for

every n ∈ F . This shows that there are εv > 0, rv > 0, and a neighborhood U(v) in Sd−1

such that if p ∈ Rd with ‖p‖ > rv and p/‖p‖ ∈ U(v), then F + p ⊂ B(‖p‖ − εv).
The collection {U(v) : v ∈ Sd−1} is an open cover of Sd−1, so by compactness

there is a finite subcover {U(v1), . . . ,U(vn)}. Put ε = min{εvj : 1 ≤ j ≤ n} and
r = max{rvj : 1 ≤ j ≤ n}. Let M be generated over Rd by m1, . . . ,mk . For s > 0 let Ms

denote the abelian group generated by {un ·mi : 1 ≤ i ≤ k,n ∈ B(s)∩Zd }. We claim that
Mr = M , so that M is finitely generated as an abelian group. We prove this by showing
successively that Mr = Mr+ε = Mr+2ε = · · · , so that M =⋃∞

q=0Mr+qε =Mr .

Let p ∈ (B(r + ε) � B(r)) ∩ Zd . Then p/‖p‖ ∈ U(vj ) for some 1 ≤ j ≤ n. By our
construction, there is a polynomial 1−f (u) = 1−∑

n∈F cf (n)un that annihilatesM , and
such that F + p ⊂ B(‖p‖ − εvj ) ⊂ B(r). Hence for 1 ≤ i ≤ k we see that

up ·mi = upf (u) ·mi =
∑
n∈F

cf (n)un+p ·mi ∈ Mr.

This shows that Mr+ε ⊂ Mr , and the reverse inclusion is trivial. The same argument
applied to Mr+ε shows that Mr+ε =Mr+2ε, and so on, completing the proof.

(1b)⇔(1c): This equivalence is standard from duality.
(2a) ⇒ (2b): By assumption, Nv(αRd/p) = ∅ for every p ∈ asc(M). Hence

char(Rd/p) > 0 for every p ∈ asc(M) by Hilbert’s Nullstellensatz. There is a prime
filtration 0 = M0 ⊂ M1 ⊂ · · · ⊂ Mr = M with Mj/Mj−1 ∼= Rd/qj , where qj is a prime
ideal containing some pj ∈ asc(M). Then the integer

∏r
j=1 char(Rd/pj ) annihilates M ,

so that M is a torsion abelian group.
(2b)⇒ (2a): Suppose that M is a torsion abelian group. Let p ∈ asc(M). Then there is

anm ∈ M withRd ·m ∼= Rd/p. SinceRd ·mmust also be a torsion abelian group, it follows



1716 M. Einsiedler et al

that char(Rd/p) > 0. In particular, p contains a non-zero constant, so that Nv(αRd/p) = ∅.
Hence Nv(αM) = ∅.

(2b)⇔(2c): This equivalence is standard from duality. ✷

7. Expansive rank, entropy rank, and Krull dimension
Although a Zd -action nominally involves d commuting transformations, sometimes its true
‘rank’ is less. In this section we describe two ways to measure this rank. In what follows
h denotes topological entropy.

Definition 7.1. Let β be a topological Zd -action. Define the expansive rank of β to be

exprk(β) = min{k : Ek(β) �= ∅},
and the entropy rank of β to be

entrk(β) = max{k : there is a rational k-plane V with h(β, V ∩ Zd ) > 0}.
By convention, if β is not expansive we put exprk(β) = d + 1, and if the set defining
entrk(β) is empty we put entrk(β) = 0.

These ranks attempt to measure, from the viewpoints of expansiveness and of entropy,
the maximum number of ‘independent transformations’ in the action such that the
remaining transformations are determined in some sense. As a concrete instance of what
we have in mind, consider Ledrappier’s Example 2.5. If L is an expansive line, and L1

denotes the thickening of L by 1, then every element of the action can be written as a
function of αn for finitely many n ∈ L1 ∩ Z2. In this sense α has expansive rank 1.

PROPOSITION 7.2. Let β be a topological Zd -action. Then entrk(β) ≤ exprk(β).

Proof. Let exprk(β) = k. It follows from [BL, Theorem 6.3] that if V is a k-plane, then
h(β, V ∩ Zd ) < ∞. A standard argument now shows that if W is a rational subspace of
dimension≥ k + 1 then h(β,W ∩ Zd ) = 0. Hence entrk(β) ≤ k. ✷

We remark that an alternative proof of this proposition can be obtained by modifying
arguments of Shereshevsky [Sh]. We also observe that in general the inequality here can
be strict, for example a zero entropy subshift has entropy rank zero but expansive rank one.

The building blocks for algebraic Zd -actions are based on modules of the form Rd/p

for prime ideals p. For these we investigate expansive and entropy ranks. The appropriate
algebraic version of rank is Krull dimension for rings. Recall that the Krull dimension
kdim R of a ring R is the supremum of the lengths r of all chains p0 � p1 � · · · � pr
of prime ideals in R (see [E, Ch. 8] for the necessary background). For example,
kdimRd = d + 1. In [BL, Theorem 7.5] it is shown that if p is a prime ideal in Rd
generated by g elements, then

exprk(αRd/p) ≥ kdim(Rd/p)− 1 ≥ d − g,
and if char(Rd/p) > 0 then

exprk(αRd/p) ≥ d − g + 1.
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Since expansive and entropy ranks in some sense measure dimension, one might
heuristically expect exprk(αRd/p), entrk(αRd/p) and kdim(Rd/p) to coincide. The best
that can be said in this direction is as follows.

PROPOSITION 7.3. Let αRd/p be an expansive action with zero entropy. Then

entrk(αRd/p) = kdim(Rd/p) ≤ exprk(αRd/p).

If char(Rd/p) > 0 then all of these quantities are equal.

Proof. Let k = exprk(αRd/p). Since the expansive set is open, there is a rank k lattice in Zd

for which the restriction of αRd/p is expansive. By a simple change of variables, we may
assume that this lattice is generated by the first k unit vectors. That is, the subaction dual
to multiplication by u1, . . . , uk is expansive. We thus consider Rd/p as an Rk-module.
We claim that the images of the variables u1, . . . , uk in Rd/p must satisfy a polynomial
relation, and also that each uj for j > k must be algebraic over u1, . . . , uk . For the first
claim, observe that if the images of u1, . . . , uk in Rd/p do not satisfy any polynomial
relation, then the natural map Rk → Rd/p is injective, so that {0} is a prime ideal
associated to theRk-moduleRd/p. But by Theorem 3.1 this contradicts the assumption that
the restriction of αRd/p to the first k variables is expansive. If some uj were not algebraic
over u1, . . . , uk , then Rd/p would not be a Noetherian Rk-module, again contradicting the
expansiveness assumption. It follows that kdim(Rd/p) ≤ kdim(Rk)− 1 = k.

Now let kdim(Rd/p) = k, and assume first that char(Rd/p) = 0. Then any
k + 1 monomials must satisfy two coprime irreducible polynomial relations, so that the
entropy of the corresponding Zk+1-action is zero. Hence entrk(αRd/p) ≤ kdim(Rd/p).
Now assume without loss of generality that the images of the variables uk+1, . . . , ud

in Rd/p are algebraic over the images of u1, . . . , uk , and that u1, . . . , uk satisfy only
one polynomial relation. If this relation is not a generalized cyclotomic polynomial,
then the corresponding Zk-subaction has positive entropy [LSW, Example 5.4], so that
entrk(αRd/p) ≥ kdim(Rd/p). So we may assume that this single polynomial relation is an
irreducible generalized cyclotomic polynomial. After a suitable change of variables, this
implies that urk = 1 in Rd/p for some r ≥ 1. Since the original system is expansive, we
may find among the variables uk+1, . . . , ud a variable uj which is not a root of unity. Now
the same argument may be applied to the set of variables u1, . . . , uk−1, uj . Continuing,
we either arrive at a Zk-subaction with positive entropy or a contradiction. We deduce that
entrk(αRd/p) ≥ kdim(Rd/p), and so entrk(αRd/p) = kdim(Rd/p).

Finally, suppose char(Rd/p) = p > 0, and let k = kdim(Rd/p). Then Rd/p is a
ring extension of Fp[u±1

1 , . . . , u±1
k ]. By Noether normalization [S, Section 8] we may

choose variables so that u1, . . . , uk do not satisfy a polynomial relation, and the variables
u±1
k+1, . . . , u

±1
d are integral over u1, . . . , uk . This shows that there is an expansive, positive-

entropy Zk-subaction. Hence entrk(αRd/p) = exprk(αRd/p) = kdim(Rd/p). ✷

The next example shows that the inequality in Proposition 7.3 can be strict when
char(Rd/p) = 0.

Example 7.4. (Krull dimension strictly less than expansive rank) Let φ(z) = z2 − z− i =
(z − λ1)(z − λ2) and ψ(z) = z2 + z − 2i = (z − µ1)(z − µ2), where i = √−1.
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Set F = {0, λ1, λ2, µ1, µ2}. Define s : C→ C3 by s(z) = (z, φ(z), ψ(z)). Put

W = {s(z) : z ∈ C � F } ⊂ (C×)3.
Let p ⊂ R3 be the ideal of Laurent polynomials in R3 that vanish on all of W .

We will show that p is a prime ideal, that αR3/p is expansive and mixing, and that
2 = kdim(R3/p) < exprk(αR3/p) = 3.

To begin, let g(u, v,w) = (u2 − u − v)2 + 1 and h(u, v,w) = w − 2v + u2 − 3u.
We will show that p = 〈g, h〉. Both g and h vanish on W , and so 〈g, h〉 ⊂ p. To establish
the reverse inclusion, suppose that f ∈ p. We can reduce f in R3 modulo 〈h〉 to have the
form w−nk(u, v) for some n ∈ Z and k ∈ R2. We can then reduce k(u, v) modulo 〈g〉 in
R2 to have the form v−m[p(u)v + q(u)] for some m ∈ Z and p(u), q(u) ∈ R1. Hence f
is congruent in R3 to v−mw−n[p(u)v + q(u)] modulo 〈g, h〉. Since f is in p, it vanishes
on W , so that

f (s(z)) = φ(z)−mψ(z)−n[p(z)φ(z)+ q(z)] = 0 for z ∈ C � F .

Hence as Laurent polynomials with complex coefficients, p(z)φ(z) = −q(z). If p �= 0
in R1, then the non-zero coefficient of the smallest power of z on the left-hand side would
be pure imaginary, while on the right-hand side it would be real. This contradiction shows
that p = 0, and thus q = 0, hence f ∈ 〈g, h〉. This proves that p = 〈g, h〉.

To show that p is prime, suppose that f ·k ∈ p for some f, k ∈ R3. Then f (s(z))·k(s(z))
is a rational function that vanishes on C�F . Hence at least one of f (s(z)) or k(s(z))must
vanish on C � F , so that f ∈ p or k ∈ p, establishing primality of p. Alternatively, one
can give an algebraic proof that p is prime along the lines of Example 5.8.

To compute kdim(R3/p), first note that h gives w in terms of u and v in R3/p. Then g
shows that v is algebraic over u in R3/p. It now follows from standard facts about Krull
dimension (see [E, Ch. 13]) that kdim(R3/p) = kdim(R1) = 2.

We next examine the expansive character of αR3/p. Define W = {(a, b, c) : (a, b, c) ∈
W }. We claim that V(p) = W ∪W . Since all polynomials in p have real coefficients, it is
clear thatW ∪W ⊂ V(p). Conversely, suppose that (a, b, c) ∈ V(p). Since g(a, b, c) = 0,
it follows that a2 − a − b = ±i. If a2 − a − b = i, then using h(a, b, c) = 0 we see
that c = a2 + a − 2i. Thus (a, b, c) = s(a) ∈ W . If a2 − a − b = −i, then taking
complex conjugates and applying the previous argument shows that (a, b, c) = s(a) ∈ W ,
so that (a, b, c) ∈ W . Hence V(p) = W ∪ W . Note that log |W | = log |W |, so that
log |V(p)| = log |W |.

By Theorem 3.1, αR3/p is expansive if and only if 0 /∈ log |W |. Hence it suffices to
show that the curve γ (θ) = (log |φ(eiθ )|, log |ψ(eiθ )|) does not pass through the origin.
But this is clear from the graph of γ shown in Figure 6(a). Hence αR3/p is expansive.

Next, we show that Nv(αR3/p) = S2, and hence that N(αR3/p) = S2. Consider that
cross-section of log |W | corresponding to setting the first coordinate to log r . Since then
z = reiθ , this cross-section is given by the curve γr(θ) = (log |φ(reiθ )|, log |ψ(reiθ )|).
For r close to 1 each γr is a curve that surrounds the origin, and hence the part of log |W |
with first coordinate close to 0 is a surface that surrounds the origin in R3. As r varies from
0 to∞, this surface generates six ‘tendrils’ stretching off to infinity (see Figure 6(b), where
the term ‘amoeba’ is apt). Two tendrils correspond to r = |λ1| ≈ 1.44 and r = |λ2| ≈
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FIGURE 6. Cross-section and logarithmic image.

0.69, and they are asymptotic to the half-lines L1 and L2 in the −e2 direction given by
(log |λj |, 0, log |ψ(λj )|)− [0,∞)e2 for j = 1, 2. Another two tendrils correspond to the
half-linesL3 and L4 in the−e3 direction given by (log |µk|, log |φ(µk)|, 0)−[0,∞)e3 for
k = 1, 2. As r → 0, log r → −∞, and there is a fifth tendril asymptotic to the half-line
L5 in the−e1 direction given by (0, log |φ(0)|, log |ψ(0)|)−[0,∞)e1. Finally, as r →∞
there is a sixth tendril asymptotic to L6 = [0,∞)v, where v = (1/3, 2/3, 2/3).

Note that when the half-lines L1 through L5 are extended to lines, none passes through
the origin. It follows that the radial projection of log |W | to S2 must cover all of S2, with
the possible exception of v = (1/3, 2/3, 2/3) corresponding to L6. At this point we can
conclude that N(αR3/p) = S2 since it is closed. However, we continue with the complete
description of Nv(αR3/p).

To handle the remaining point v, we show that there is a z ∈ C � F such that
log |φ(z)| = log |ψ(z)| = 2 log |z|. The equation log |φ(z)| = 2 log |z| = log |z2| implies
that |φ(z)/z2| = 1, so that φ(z)/z2 = eiθ for some θ . Hence (1− eiθ )z2− z− i = 0, with
roots

z = 1±√
1+ 4i(1− eiθ )
2(1− eiθ ) . (7.1)

A similar calculation starting with log |ψ(z)| = 2 log |z| shows that

z = −1±√
1+ 8i(1− eiξ )

2(1− eiξ ) (7.2)

for some ξ . Plotting the roots using the positive sign for (7.1) and (7.2) gives the graphs
shown in Figure 7. They cross in two points, one of which is z1 ≈ 0.53 + 3.36i. Then
z1 ∈ C � F , log |z1| > 0, log |φ(z1)| > 0, log |ψ(z1)| > 0, and so log |s(z1)| = tv for
some t > 0. Hence v ∈ Nv(αR3/p), and so Nv(αR3/p) = S2. Thus exprk(αR3/p) = 3,
showing that here Krull dimension is strictly less than expansive rank.

We conclude this example with two further properties of αR3/p: it is mixing, and every
2-dimensional plane has positive entropy.
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FIGURE 7. Graphs of roots.

By Theorem 6.5(2) of [S], αR3/p is mixing if and only if un− 1 /∈ p for all n ∈ Z � {0}.
Suppose the contrary. Then the plane {x ∈ R3 : x ·n = 0} would contain log |W |, which is
evidently false. Thus αR3/p is mixing.

Let Q be a rational 2-dimensional subspace of R3. Denote the lattice Q ∩ Z3 by G,
and let m,n ∈ G form an integral basis for G. Suppose that h(αR3/p, G) = 0. Let
RG = Z[uk : k ∈ G] and pG = p ∩ RG . As G-actions, αRG/pG is a factor of αR3/p, so
that h(αRG/pG ) = 0. By the preceding paragraph, pG contains no generalized cyclotomic
polynomials, so by Theorem 4.2 of [LSW], it follows that pG cannot be principal. Hence
kdim(RG/pG) = 1 andRG/pG is certainly Z-torsion-free, so that kdim[(RG/pG)⊗Q] = 0.
Thus V(pG) is finite, say V(pG) = {(ξj , ηj ) : 1 ≤ j ≤ r}. Hence for every z ∈ V(p)
there is a 1 ≤ j ≤ r for which zm = ξj and zn = ηj , or m · log |z| = log |ξj |
and n · log |z| = log |ηj |. It follows that if Lj denotes the line of intersection between
the two planes {x ∈ R3 : m · x = log |ξj |} and {x ∈ R3 : n · x = log |ηj |}, then
log |V(p)| ⊂ ⋃r

j=1 Lj . But the radial projection of finitely many lines to S2 cannot cover
S2, contradicting Nv(αR3/p) = S2. This shows that αR3/p has strictly positive entropy with
respect to every rational 2-dimensional plane.

Example 7.4 shows that when kdim(Rd/p) = d−1, then Nv(αRd/p) can have non-empty
interior. We now turn to Nn(αRd/p). We have already observed two cases when Nn(αRd/p)

has non-empty interior: p = 0, with kdim(Rd/p) = d + 1; and p = 〈f 〉 with |cf (n)| > 1
for some vertex n of N (f ) (see Example 5.4), where kdim(Rd/p) = d . Our next result
shows that when kdim(Rd/p) drops below d , then Nn(αRd/p) cannot have interior.

PROPOSITION 7.5. Suppose that p is a prime ideal in Rd with kdim(Rd/p) ≤ d−1. Then
Nn(αRd/p) is closed with empty interior.

Proof. Remark 4.5 shows that Nn(αRd/p) is closed.
First suppose that char(Rd/p) = p > 0. Let Rd,p = (Z/pZ)[u±1

1 , . . . , u±1
d ], and

q be the image of p under the map Rd → Rd,p that reduces coefficients mod p. Then
Rd/p ∼= Rd,p/q. Hence kdim(Rd,p/q) = kdim(Rd/p) ≤ d − 1 < d = kdim(Rd,p), so
that q �= 0. Choose 0 �= f ∈ q. Then Nn(αRd/p) is contained in Nn(αRd,p/〈f 〉), which by
[BL, Theorem 7.2] equals the (d − 2)-skeleton of the spherical dual of the mod p Newton
polyhedron of f . Hence Nn(αRd/p) has empty interior.
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Finally, suppose that char(Rd/p) = 0. Recall from Definition 6.4 the meaning of
support and of H -exposed vertex.

Let U be an arbitrary non-empty open set in Hd . Choose a ≥ 1 minimal so that there is
anH ∈ U and f ∈ p having anH -exposed vertex n with cf (n) = a. Note that p �= 0 since
kdim(Rd/p) ≤ d − 1, so that a exists. We claim that a = 1. If so, then Lemma 4.4 shows
that U contains an H for which Rd/p is RH -Noetherian, and so Nn(αRd/p) is nowhere
dense.

Suppose that a > 1. Choose H ∈ U and f ∈ p such that f has an H -exposed
vertex n with cf (n) = a. We may clearly assume that f is irreducible since any factor
of f would also have an H -exposed vertex. Since H -exposure is an open condition and
rational directions are dense, we may also assume that H is rational, i.e. that there is an
m ∈ Zd � {0} with H = {x ∈ Rd : x · m ≤ 0}. Adjusting f by a monomial if necessary,
we may assume that supp(f ) ⊂ H and that supp(f ) ∩ ∂H = {0}, so that cf (0) = a.

Next, we claim that there is a 0 �= g ∈ p with supp(g) ⊂ ∂H . Equivalently, if Rm

denotes Z[uk : k · m = 0], then Rm ∩ p �= {0}. For suppose that Rm ∩ p = {0}. Since f
is irreducible and Rd/〈f 〉 has Krull dimension d , it follows that 0 � 〈f 〉 � p is a chain of
prime ideals in Rd . Let S denote the multiplicatively closed subset Rm � {0} of Rd . Since
S ∩ p = ∅, it follows that 0 � S−1(〈f 〉) � S−1p is a chain of prime ideals in S−1Rd .
But S−1Rd ∼= S−1Rm[v, v−1] for a suitable monomial v, and S−1Rm is a field, so that
kdim(S−1Rm[v, v−1]) = 1, contradicting the existence of a chain of primes of length two.
Hence Rm ∩ p �= {0}.

Let 0 �= g ∈ Rm ∩ p. Since char(Rd/p) = 0, then p ∩ Z = {0}. If all the coefficients
of g are divisible by a, then primality of p shows that g/a is also in p. Hence we can find
g ∈ Rm ∩ p not all of whose coefficients are divisible by a. Let

h = g −
∑

n∈supp(g)

⌊
cg(n)
a

⌋
unf.

Since supp(g) ⊂ ∂H , supp(f ) ∩ ∂H = {0}, and cf (0) = a, it follows that h ∈ p,
supp(h) ⊂ H , supp(h) ∩ ∂H �= ∅, and 0 < ch(n) < a for every n ∈ supp(h) ∩ ∂H .
Hence there is a small perturbation H ′ ∈ U of H for which h has an H ′-exposed vertex
n with 0 < ch(n) < a. This contradicts the minimality of a, proving that a = 1, and
completing the proof. ✷

8. Lower-dimensional subspaces
Thus far we have concentrated on expansive behavior along half-spaces and their (d − 1)-
dimensional boundaries. Once this is found, then expansive behavior along lower-
dimensional subspaces is completely determined by [BL, Theorem 3.6]: a k-plane is
non-expansive for a Zd -action if and only if it is contained in a non-expansive (d − 1)-
plane (or, equivalently, a non-expansive half-space). Additionally, half-spaces H give
rise to subrings RH of Rd , and this algebraic structure makes certain arguments work
smoothly.

In this section we sketch how to modify our definitions and proofs to work for lower-
dimensional subspaces. In particular, we obtain a direct description of the set Nk(αM)
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of non-expansive k-planes as the union of two pieces, one coming from a Noetherian
condition on M along k-planes, and the other from a variety condition involving the
orthogonal complements of k-planes. This description is a lower-dimensional version of
(6.4).

We begin by defining a notion of Noetherian along a general subspace of Rd .

Definition 8.1. Let M be a Noetherian Rd -module and V be a k-plane in Rd . Then M is
Noetherian along V if M is RH -Noetherian for every half-space H ∈ Hd containing V .
The set of k-planes V along whichM is not Noetherian is denoted by Nn

k(αM).

Remark 8.2. By Remark 4.5, {H ∈ Hd : M is RH -Noetherian} is open. It follows that
{V ∈ Gk : M is Noetherian along V } is open, so that Nn

k(αM) is closed in Gk .

In the following, recall that V t denotes the thickening of a subspace V by an amount t .

LEMMA 8.3. Let M be a Noetherian Rd -module and V be a subspace of Rd . Then M
is Noetherian along V if and only if there are m1, . . . ,mr ∈ M and t > 0 such that M
is generated as a group by {unmj : 1 ≤ j ≤ r and n ∈ V t ∩ Zd}. In particular, if V is
rational, then M is Noetherian along V if and only if M is Noetherian as a module over
the ring Z[un : n ∈ V ∩ Zd}.
Proof. The case V = 0 is the implication (1a) ⇒ (1b) in Proposition 6.9. The case of
general V uses an entirely analogous adaptation of the proof of [BL, Theorem 3.6].

If V is rational, let RV = Z[un : n ∈ V ∩ Zd ]. Then RV is a Noetherian ring. If M is
generated as a group by {unmj : 1 ≤ j ≤ r,n ∈ V t ∩ Zd }, then it is a finitely-generated
RV -module, hence Noetherian over RV . Conversely, if M is Noetherian over RV and
H ∈ Hd contains V , then trivially M is RH -Noetherian as well, so that M is Noetherian
along V . ✷

For a subspace V of Rd , let V ⊥ denote its orthogonal complement.

THEOREM 8.4. Let M be a Noetherian Rd -module, αM be the corresponding algebraic
Zd -action, and V be a subspace of Rd . Then the following are equivalent:
(1) αM is expansive along V ;
(2) αRd/p is expansive along V for every p ∈ asc(M);
(3) Rd/p is Noetherian along V and V ⊥ ∩ log |V(p)| = ∅ for every p ∈ asc(M).

Proof. (1)⇔(2): The case V = Rd is exactly Theorem 3.1. We may therefore assume that
dimV ≤ d − 1. By [BL, Theorem 3.6], αM is not expansive along V if and only if there
is a W ∈ Gd−1 containing V such that αM is not expansive along W . By Lemma 2.9,
this occurs if and only if there is an H ∈ N(αM) containing V . Theorem 4.9 shows that
this happens if and only if H ∈ N(αRd/p) for some p ∈ asc(M). Reversing the chain
of equivalences, this time for αRd/p, shows that this occurs if and only if αRd/p is not
expansive along V for some p ∈ asc(M).

(2)⇔(3): As in the proof of (1)⇔(2), αRd/p is not expansive along V if and only if
there is an H ∈ N(αRd/p) containing V . Theorem 4.9 shows that this occurs if and only if
either Rd/p is not RH -Noetherian or [0,∞)vH ∩ log |V(p)| �= ∅, where vH is the outward
unit normal for H . By definition, αRd/p is not Noetherian along V if and only if there
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is a half-space H containing V for which Rd/p is not RH -Noetherian. If V ⊂ H , then
vH ∈ V ⊥. Hence there is an H ∈ Hd containing V with [0,∞)vH ∩ log |V(p)| �= ∅ if and
only if V⊥ ∩ log |V(p)| �= ∅. ✷

IfM is a NoetherianRd -module and V is a k-plane, then Remark 6.2 and Definition 8.1
show that M is Noetherian along V if and only if Rd/p is Noetherian along V for every
p ∈ asc(M). Hence

Nn
k(αM) =

⋃
p∈asc(M)

Nn
k(αRd/p). (8.1)

Let us define

Nv
k(αRd/p) = {V ∈ Gk : V ⊥ ∩ log |V(p)| �= ∅}

and

Nv
k(αM) =

⋃
p∈asc(M)

Nv
k(αRd/p).

Then Theorem 8.4 says that

Nk(αM) = Nn
k(αM) ∪ Nv

k(αM).

When k = d − 1, this is the image of the equality (6.4) under the map π : Hd → Gd−1

defined by π(H) = ∂H .
Next, we prove a lower-dimensional version of Proposition 7.5.

PROPOSITION 8.5. Let M be a Noetherian Rd -module, and let k ≤ d be such that
kdim(Rd/p) ≤ k for every p ∈ asc(αM). Then Nn

k(αM) is a closed subset of Gk with
empty interior.

Proof. Nn
k(αM) is closed by Remark 8.2. The case d = k is trivial. Suppose that

k = d − 1. Let π : Hd → Gd−1 be π(H) = ∂H . By definition, π(Nn(αM)) = Nn
d−1(αM).

Since Nn(αM) = ⋃
p∈asc(M) Nn(αRd/p) and each Nn(αRd/p) is nowhere dense in Hd by

Proposition 7.5, it follows that Nn
d−1(αM) is nowhere dense.

We prove the general case by downward induction on k. Assume the result is established
for k + 1. Let V be an open set in Gk . Then there is an open set W in Gk+1 such that
every W ∈ W contains a V ∈ V. By the induction hypothesis, W contains a rational
(k + 1)-plane W along which M is Noetherian. By Lemma 8.3, M is Noetherian over
RW = Z[un : n ∈ W ∩ Zd ]. We are now in the codimension one situation of the first part
of the proof. The associated primes of M as an RW -module are p ∩ RW for p ∈ asc(M).
Then RW/(p ∩ RW) is a subring of Rd/p, hence the hypothesis on Krull dimension is
satisfied for this situation. Thus there is a V ∈ V along which M is Noetherian. This
proves that Nn

k(αM) is nowhere dense in Gk . ✷

Example 8.6. We can now give another way to determine the non-Noetherian set Nn in
Example 5.8 that does not use the 2-adic arguments there. The polynomial w − 2 ∈ p

shows that Nn is contained in the lower hemisphere, and then 1+ u+ v ∈ p shows that Nn

is contained in the unionQ of the three quarter-meridians shown in Figure 5(b).
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Assume that for some v in Q the module R3/p is Noetherian over RHv . Since the
Noetherian set is open, we may assume that v is rational and does not lie on the equator.
Then there is a great circle C through v which does not contain any other point of Q.
We may assume that there is an n ∈ Zd such that C is the intersection of S2 and the plane
orthogonal to n.

By Definition 8.1, the module R3/p is Noetherian along V = Rn, since every half-
space Hw containing V has w ∈ C. By Lemma 8.3, R3/p is Noetherian over the ring
S = Z[u±n].

If S ∩ p �= {0}, then kdim(S/(p ∩ S)) = 1, and since R3/p is an integral extension we
would have kdim(R3/p) = 1, a contradiction. If S ∩ p = {0}, then w−1 = 1/2 ∈ R3/p

cannot be integral over S, contradicting the fact that R3/p is Noetherian over S. Hence Nn

consists of all of Q.

9. Homoclinic points and groups
For the first part of this section we return to topological Zd -actions. Recall from §2 that
V t denotes the thickening of a subspace V by t .

Definition 9.1. Let β be a Zd -action on a compact metric space (X, ρ). Suppose that V is
a subspace of Rd and that y0 ∈ X. We say that x ∈ X is homoclinic to y0 along V if there
is a t > 0 such that ρ(αn(x), αn(y0)) → 0 as ‖n‖ → ∞ and n ∈ V t . The set of points
in X homoclinic to y0 along V is denoted by Jβ(y0, V ). In case V = Rd we delete the
phrase ‘along V ’, and write Jβ(y0) forJβ(y0,Rd ).

Remark 9.2. If there is some t0 > 0 for which ρ(αn(x), αn(y0)) → 0 as ‖n‖ → ∞ and
n ∈ V t0 , then this also holds along V t for every t > 0. This follows easily from the
observation that Zd ∩ V t0 has bounded gaps together with continuity of β.

PROPOSITION 9.3. Let V be an expansive subspace for the topological Zd -action β on
X, and y0 ∈ X. Then Jβ(y0, V ) is at most a countable set.

Proof. This can be proven exactly as in [LS, Lemma 3.2]. ✷

Example 9.4. Let A be a finite alphabet, X = AZ
d
, and β be the Zd -shift action on X.

Then β is expansive, and Jβ(y0) is the countable set of points in X differing from y0 in
only finitely many coordinates. For every subspace V of dimension < d , it is easy to see
that Jβ(y0, V ) is uncountable.

Example 9.5. We return to Ledrappier’s example (see Examples 2.5 and 5.6). Here
β = αR2/〈2,1+u+v〉 and X = XR2/〈2,1+u+v〉. We choose y0 = 0X = 0. Since the only
point in X having finitely many non-zero coordinates is 0, we see that Jβ(0) = {0}.
Let Lθ denote the line in R2 making angle θ with the positive horizontal axis. For all
θ with 0 < θ < π/2, the sets Jβ(0, Lθ ) are all equal. Each consists of points of the
form indicated in Figure 8(a), where the shaded regions contain only 0’s, and coordinates
represented by the dots can be of an arbitrary finite length, filled in with arbitrary values,
and these are used to determine all remaining coordinates.

For π/2 < θ < 3π/4, all the sets Jβ(0, Lθ ) are also equal, and each consists of
points shown in Figure 8(b), with the same conventions as before. For 3π/4 < θ < π ,
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(a) (b) (c)

FIGURE 8. Homoclinic points for Ledrappier’s example.

Figure 8(c) describes the form of points in each Jβ(0, Lθ ). It is also easy to see that
Jβ(0, L0) = Jβ(0, Lπ/2) = Jβ(0, L3π/4) = {0}.

Here β has expansive components C1 = {Lθ : 0 < θ < π/2}, C2 = {Lθ : π/2 < θ <

3π/4}, and C3 = {Lθ : 3π/4 < θ < π}. Within an expansive component the homoclinic
set is constant, but it changes abruptly when passing from one component to another. See
[MS] for another example of how the homoclinic group varies.

The following result shows that homoclinic sets are always constant within an expansive
component. Roughly speaking, nearby planes in an expansive component code each other,
so a point that is homoclinic for one is also homoclinic for the other.

THEOREM 9.6. Let β be a topological Zd -action on a compact metric space X, let C be
a connected component of Ek(β), and let y0 ∈ X. Then Jβ(y0, V ) = Jβ(y0,W) for all
V,W ∈ C.

Proof. We show that Jβ(y0, ·) is locally constant on C, hence constant on C by
connectedness.

Let U ∈ C and δ be an expansive constant for β. Recall Definition 2.8 of coding for
subsets of Rd . Let B(r) be the open ball of radius r in Rd . For V ∈ Gk and η > 0 put
Vη = {x ∈ Rd : dist(x, V ) < η‖x‖}. It follows from [BL, Proposition 3.8] that there is a
compact neighborhood U of U in C and positive numbers s, t, η > 0 such that for every
V,W ∈ U and every r > 0 we have that V t � B(r) codesWη � B(r + s).

Suppose that V,W ∈ U and x ∈ Jβ(y0, V ). Then there is an r > 0 such that
ρ(βn(x), βn(y0)) ≤ δ for every n ∈ V t � B(r). Hence by coding, this inequality also
holds for every n ∈ Wη � B(r + s). Let ε > 0. A simple compactness argument

using expansiveness of β shows that there is an a > 0 such that ρB(a)β (x, y0) ≤ δ

implies that ρ(x, y0) < ε. Choose q large enough so that if x ∈ W and ‖x‖ > q ,
then x + B(a + t) ⊂ Wη � B(r + s). It follows that ρ(βn(x), βn(y0)) < ε for every
n ∈ Wt with ‖n‖ > q . This proves that x ∈ Jβ(y0,W), and so Jβ(y0, V ) ⊂ Jβ(y0,W).
Interchanging the roles of V and W gives the reverse inclusion. ✷

We next turn to considering homoclinic points for an algebraic Zd -action α onX. Since
ρ is translation invariant, ρ(αn(x), αn(y0)) = ρ(αn(x − y0), 0X), so that Jα(y0, V ) =
y0+Jα(0X, V ). Hence for algebraic Zd -actions we need only computeJα(0X, V ), which
we shorten toJα(V ). ObviouslyJα(V ) is a subgroup ofX, which we term the homoclinic
group of α along V . When V = Rd , the subgroupJα = Jα(Rd) is called the homoclinic
group of α.
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The homoclinic groups of algebraic Zd -actions were studied in [LS], especially for
expansive actions. The main result there is the following [LS, Theorems 4.1 and 4.2].
Here ‘entropy’ is taken with respect to Haar measure.

THEOREM 9.7. Let α be an expansive algebraic Zd -action on X.

(1) Jα is non-trivial if and only if α has positive entropy.
(2) Jα is non-trivial and dense in X if and only if α has completely positive entropy.

Using this together with constancy of the homoclinic group within an expansive
component, we obtain further instances of the expansive subdynamics philosophy, as
follows.

Call V ∈ Gk rational if V ∩ Zd spans V . For an expansive component C ⊂ Ek(α) let
CQ = {V ∈ C : V is rational}, which is a dense subset of C. For V ∈ CQ we let α|V∩Zd
denote the rank k action obtained by restricting α to V ∩ Zd .

THEOREM 9.8. Let α be an algebraic Zd -action and C be an expansive component of
Ek(α). If for some V ∈ CQ the action α|V∩Zd has positive entropy, has completely positive
entropy, or is isomorphic to a Zk Bernoulli shift, then the same property holds for α|W∩Zd
for every W ∈ CQ.

Proof. By Theorem 9.7, α|V∩Zd has positive entropy if and only if Jα(V ) �= {0X}, and
by Theorem 9.6 we have Jα(V ) = Jα(W) for all W ∈ CQ, establishing the positive
entropy portion. The proof for completely positive entropy is similar, using density rather
than non-triviality of the homoclinic group. Finally, completely positive entropy for an
algebraic Zd -action is equivalent to Bernoullicity (see [RS] or [S, §23]). ✷

Remarks 9.9. (1) By [BL, Theorem 6.3(4)], if there is a rational V ∈ Ek(α) for which
α|V∩Zd has zero entropy, then α|W∩Zd has zero entropy for every W ∈ Gk . This not only
provides an alternative proof of the first part of the previous theorem, it also shows that on
the entire set Ek(α) either entropy vanishes identically or it is strictly positive everywhere.

(2) It is likely that suitable definitions of completely positive entropy and Bernoullicity
can be found for non-rational k-planes, and that the conclusions of Theorem 9.8 can be
extended to all W ∈ C. However, we will not pursue this further here.

Example 9.10. (Homoclinic groups of 2-planes for Example 5.8) To illustrate some of the
phenomena surrounding the preceding theorems, we describe the homoclinic groups of
2-planes for Example 5.8. In this example, d = 3, p = 〈1+u+v,w−2〉, X = XR3/p, and
α = αR3/p. Observe that since p is non-principal, α has zero entropy. Since α is expansive,
Jα = {0} by Theorem 9.7.

To help describe the groups Jα(V ) for 2-planes V ∈ G2, recall the map π : H3 → G2

defined by π(H) = ∂H . Under our standing correspondence H3 ↔ S2, this map is the
usual identification of antipodal points of S2 to obtain projective 2-space G2. By vertically
projecting the upper hemisphere of S2 to the unit disk D, we can represent G2 as D with
antipodal boundary points identified. Using this representation, the image π(N(α)) in D is
shown in Figure 9(a). The shaded region is π(Nv(α)), while the three segments comprise
π(Nn(α)). There are three expansive components of 2-planes, labeled C1, C2, and C3.
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2

FIGURE 9. Analysis for homoclinic groups of 2-planes.

We say that y ∈ Jα(V ) is a fundamental homoclinic point for V if {αn(y) : n ∈ Z3}
generatesJα(V ) as an abelian group.

We will sketch the following description of how Jα(V ) varies for V ∈ D.
(1) For each expansive component Cr there is an explicit non-trivial fundamental

homoclinic point xr (recall that Jα(·) is constant within an expansive component);
(2) Jα(V ) = {0} for every V ∈ π(Nn(α)); and
(3) for every V ∈ π(Nv(α)) � π(Nn(α)) there is a non-trivial fundamental homoclinic

point xV that varies continuously with V .
For (1), first consider component C1. Define x1 ∈ X by

x1
i,j,k =


(−1)i−1

(
i

−j
)

2k, if i ≥ 0, j ≤ 0,

(−1)j−1
(
j − 1

−i − 1

)
2k, if i ≤ −1, j ≥ 1,

0, otherwise.

Figure 9(b) shows a typical horizontal slice of x1 at level k, where c = 2k. The 2-plane
V1 ∈ C1, shown in Figure 9(a), is the vertical plane that intersects the horizontal uv-plane
in the line u = v. Clearly x1 ∈ Jα(V1). Using the fact that the coordinates of any point in
X homoclinic along a vertical line must be an integer times the successive powers of 2, it
is not hard to show that integer combinations of shifts of x1 comprise all of Jα(V1). Thus
x1 is a fundamental homoclinic point for V1. It is therefore also a fundamental homoclinic
point for all V ∈ C1. A similar construction produces fundamental homoclinic points x2

and x3 for C2 and C3, respectively, which bear the same relationship to x1 as Figures 8(b)
and 8(c) bear to Figure 8(a).

It is also possible to show using this description that the intersection of the homoclinic
groups of any pair of distinct expansive components is trivial, analogous to a result in [MS]
for a pair of commuting toral automorphisms.
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For (2), we give a complete argument only for the horizontal plane V0. A somewhat
more complicated proof is required for general V ∈ π(Nn(α)). For brevity we assume
familiarity with [LS].

Suppose that x ∈ Jα(V0). Let f (u, v) = 1 + u + v, and define f̃ ∈ 5∞(Z3,Z)
by f̃n = cf (−n). Choose x ∈ 5∞(Z3,R) so that |xn| ≤ 1

2 and xn ≡ xn (mod 1).
Then xn → 0 along each horizontal plane Vk = V0 + ke3. Since x ∈ X, we have
that f̃ ∗ x ∈ 5∞(Z3,Z) and also tends to 0 in each Vk. Hence there are polynomials
hk ∈ R2/〈1 + u + v〉 such that f̃ ∗ x|Vk = (wkhk)̃ . Since w − 2 ∈ p, it follows that
2hk−1 ≡ hk in R2/〈1+u+ v〉. Hence each hk is divisible in R2/〈1+ u+ v〉 by arbitrarily
large powers of 2. But R2/〈1 + u + v〉 ∼= Z[u±1, 1/(u + 1)] is a localization of Z[u] in
which 2 is not invertible. Hence each hk = 0. Let y ∈ 5∞(Z2,R) be the restriction of x
to some Vk . Then f̃ ∗ y = 0, so that y is a pseudo-measure on Z2 whose support must
be contained in the finite set V(f ) ∩ S2. But then y is almost periodic, and in particular
y /∈ c0(Z2) unless y = 0. This proves that the only point homoclinic for V0 is x = 0.

For (3), let V ∈ π(Nv(α))�π(Nn(α)). Choose a, b so that (a, b, 1) is normal to V . Put
fa,b(u, v) = 1 + 2au−1 + 2bv−1 and Fa,b = 1/fa,b. To construct xV , we first construct
an auxiliary point y ∈ 5∞(Z2,R) as follows. If V /∈ ∂π(Nv(α)) then Fa,b has two poles
of order one in S2, and so Fa,b ∈ L1(S2). In this case we put yn = F̂a,b(n). Then

yn → 0 as ‖n‖ → ∞ (9.1)

by the Riemann–Lebesgue lemma. Also,

(f̃a,b ∗ y)n = yn + 2ayn+e1 + 2byn+e2 =
{

1, if n = 0,

0, otherwise.
(9.2)

If V ∈ ∂π(Nv(α)), we can still expand Fa,b in a series. For example, if a < 0 and b < 0,
then V being on the boundary of π(Nv(α)) corresponds to 2a + 2b = 1. Hence

Fa,b = 1

1+ 2au−1 + 2bv−1 =
∞∑
k=0

(−1)k(2au−1 + 2bv−1)k

=
∞∑
k=0

k∑
j=0

(−1)k
(
k

j

)
2aj+b(k−j)u−j v−(k−j).

In this case let y(m,n) denote the coefficient of umvn in the expansion. Then (9.1) holds by
standard estimates and (9.2) by construction.

Next we construct xV from y. Let V ′ = V − [0, 1)e3. Vertical projection from R3 to
R2 gives a bijection from V ′ ∩Z3 to Z2. Let {r} denote the fractional part of a real number
r . Define xVn for n ∈ V ′ ∩ Z3 by

xV(m,n,)−ma−nb*) = 2−{−ma−nb}y(m,n).

Extend xV to those n above V ′ using xVn+e3
= 2xVn , and to those n below V ′ using

xVn + xVn+e1
+ xVn+e2

= 0. The former extension is clearly unique, and the latter is
unique since V /∈ π(Nn(α)). An elementary argument shows that xV ∈ X, and xV is
homoclinic along V by construction. It is not difficult to establish that xV is a fundamental
homoclinic point for V . Finally, the construction shows that xV varies continuously for
V ∈ π(Nv(α))� π(Nn(α)).
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