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HOMOCLINIC POINTS OF ALGEBRAIC Zd-ACTIONS

DOUGLAS LIND AND KLAUS SCHMIDT

1. Introduction

An algebraic Zd-action is an action of Zd by (continuous) automorphisms of a
compact abelian group. The dynamics of a single group automorphism have been
investigated in great detail over the past several decades. More recently, the study
of algebraic Zd-actions for d ≥ 2 has revealed a striking interplay between these
actions and commutative algebra. In §2 we summarize those parts of this interaction
needed here.

The purpose of this paper is to study the homoclinic points of algebraic Zd-
actions. Let α be an algebraic Zd-action on the compact abelian group X , and
let 0X denote the additive identity of X . A point x ∈ X is homoclinic for α if
αnx → 0X as ‖n‖ → ∞. The set ∆α(X) of all homoclinic points for α is clearly
a subgroup of X which we call the homoclinic group of α. In §3 we discuss some
elementary properties of the homoclinic group, including countability of ∆α(X)
whenever α is expansive.

Our two main results are contained in §4. These are that if α is an expansive
algebraic Zd-action, then (1) ∆α(X) is nontrivial if and only if α has (strictly)
positive entropy, and (2) ∆α(X) is nontrivial and dense in X if and only if α has
completely positive entropy. The second result is proved by first establishing in
Lemma 4.5 the density of ∆α(X) for certain “principal” expansive actions by use
of Fourier analysis. For these actions ∆α(X) is generated by a single fundamental
homoclinic point which can be computed explicitly. This lemma is then combined
with some commutative algebra to prove (2). Recent work of Kaminker and Putnam
[3], [11] has suggested a general duality in the K-theory of C∗-algebras. For a
principal expansive action α on X we show that ∆α(X) is isomorphic to the dual
group of X , providing a class of examples to which their duality theory applies.

Ruelle has investigated expansive topological Zd-actions which satisfy an orbit
tracing property called specification (see [12] and [13]), showing that there is a
thermodynamic formalism for such actions. In §5 we show that expansive algebraic
Zd-actions with completely positive entropy always satisfy very strong specification
properties, thereby providing an extensive class of examples to which the thermo-
dynamic formalism applies.
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General algebraic Zd-actions can be built from simpler ones using a twisted skew
product construction. In §6 we use the specification properties from §5 to show that
a twisted skew product is measurably isomorphic to a direct product. For d = 1 this
fact proved useful in substantially simplifying the proof that ergodic automorphisms
of compact abelian groups are measurably isomorphic to Bernoulli shifts.

Finally, we describe in §7 examples of nonexpansive algebraic Zd-actions which
show that in general there is no relationship between entropy and the size of the
homoclinic group. One of these examples has completely positive entropy and triv-
ial homoclinic group, while another has zero entropy and uncountable homoclinic
group. The latter example makes crucial use of a result from Fourier analysis
about the decay of the Fourier transform of a smooth measure on a hypersurface
with sufficient curvature.

2. Algebraic Zd-actions

In this section we review the connections between algebraic Zd-actions and com-
mutative algebra.

Let Rd = Z[u±1
1 , . . . , u±1

d ] be the ring of Laurent polynomials with integral
coefficients in the commuting variables u1, . . . , ud. We write f ∈ Rd as f =∑

m∈Zd cf (m)um with um = um1
1 · · · · · umd

d and cf (m) ∈ Z for every m =
(m1, . . . ,md) ∈ Zd, where cf (m) = 0 for all but finitely many m.

Let α be an algebraic Zd-action on a compact abelian group X . The additively-
written dual group M = X̂ is a module over the ring Rd with operation

f · a =
∑

m∈Zd

cf (m)α̂m(a)(2.1)

for f ∈ Rd and a ∈ M , where α̂m is the automorphism of M = X̂ dual to αm. In
particular,

um · a = α̂m(a)(2.2)

for m ∈ Zd and a ∈ M . The module M is Noetherian (and hence countable)
whenever α is expansive (see (4.10) and Proposition 5.4 in [14]). Conversely, if M
is an Rd-module, define an algebraic Zd-action αM on the compact abelian group
XM = M̂ by declaring αm

M to be dual to multiplication by um on M . Note that
XM is metrizable if and only if M is countable.

A prime ideal p ⊂ Rd is said to be associated with an Rd-module M if p = {f ∈
Rd : f · a = 0M} for some a ∈ M , and the module M is associated with a prime
ideal p ⊂ Rd if p is the only prime ideal associated with M . The set of (distinct)
prime ideals associated with a Noetherian Rd-module M is finite.

If α is an algebraic Zd-action on X , then its topological entropy h(α) coincides
with the metric entropy hλX (α), where λX is the normalized Haar measure on X .
We recall the following results from [14], [8], and [17, Lemma 4.5] (cf. also [15], [4],
and [16]), which show that the dynamical properties of αM are largely controlled
by the prime ideals associated to M .

Lemma 2.1. Let M be a Noetherian Rd-module with associated prime ideals
{p1, [0] . . . , pm}.

(1) The following conditions are equivalent.
(i) αM is expansive;
(ii) αRd/pj

is expansive for every j = 1, . . . ,m;
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(iii) VC(pj) ∩ Sd = ∅ for every j = 1, . . . ,m, where

VC(pj) = { z ∈ (C×)d : f(z) = 0 for every f ∈ pj },
C× = C r {0} and S = {z ∈ C : |z| = 1}.

(2) The following conditions are equivalent.
(i) αM is mixing (with respect to Haar measure);
(ii) αRd/pj

is mixing for every j = 1, . . . ,m;
(iii) pj ∩ {um − 1 : 0 6= m ∈ Z} = ∅ for every j = 1, . . . ,m.

(3) The following conditions are equivalent.
(i) αM has positive entropy (with respect to Haar measure);
(ii) αRd/pj

has positive entropy for some j = 1, . . . ,m;
(iii) pj is principal and αRd/pj

is mixing for some j = 1, . . . ,m.
(4) The following conditions are equivalent.

(i) αM has completely positive entropy (with respect to Haar measure);
(ii) αRd/pj

has positive entropy for every j = 1, . . . ,m;
(iii) pj is principal and αRd/pj

is mixing for every j = 1, . . . ,m.
(5) There exists a Noetherian Rd-module N ⊃M with the following properties.

(i) h(αN ) = h(αM );
(ii) N = N (1) ⊕ · · · ⊕N (m), where each of the modules N (j) has a finite se-

quence of submodules N (j) = N
(j)
sj ⊃ · · · ⊃ N (j)

0 = {0} with N (j)
k /N

(j)
k−1
∼=

Rd/pj for k = 1, . . . , sj. In particular, αN is expansive (or mixing) if
and only if αM is expansive (or mixing).

In view of this lemma it is useful to have an explicit realization of Zd-actions of
the form αRd/p, where p ⊂ Rd is a prime ideal. Let σ be the shift-action of Zd on
TZd

defined by

(σmx)n = xm+n ,(2.3)

and for f =
∑

m∈Zd cf (m)um ∈ Rd put

f(σ) =
∑

m∈Zd

cf (m)σm : TZd −→ TZd

.(2.4)

Identify Rd with the dual group of TZd

by setting

〈f, x〉 = exp
[
2πi(f(σ)x)0

]
(2.5)

for f ∈ Rd and x ∈ TZd

. A closed subgroup X ⊂ TZd

is shift-invariant if and only
if its annihilator X⊥ = a ⊂ Rd is an ideal, in which case

X = XRd/a = { x ∈ TZd

: f(σ)x = 0TZd for every f ∈ a }(2.6)

and αRd/a is the restriction of σ to XRd/a ⊂ TZd

.
More generally, if α is an expansive algebraic Zd-action on X , then X is metriz-

able, M = X̂ is a Noetherian Rd-module, and there exist elements a1, . . . , an
in M such that M = Rd · a1 + · · · + Rd · an. The surjective homomorphism
(f1, . . . , fn) 7→ f1 · a1 + · · ·+ fn · an from (Rd)n to M dualizes to a continuous, in-
jective group homomorphism ψ : X −→ (̂Rd)n = (Tn)Zd

and allows us to regard X
as a closed, shift-invariant subgroup of (Tn)Zd

and α as the restriction to X of the
shift-action σ on (Tn)Zd

. We write a typical point x ∈ X ⊂ (Tn)Zd

as x = (xn) with
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xn = (x(1)
n , . . . , x

(n)
n ) ∈ Tn for every n ∈ Zd, or alternatively as x = (x(1), . . . , x(n))

where x(i) ∈ TZd

. Every character in

X⊥ ⊂ (̂Tn)Zd =
⊕

Zd

Zn ∼= (Rd)n

is of the form

〈h, x〉 =
n∏
i=1

〈h(i), x(i)〉(2.7)

for x = (x(1), . . . , x(n)) ∈ X ⊂ (Tn)Zd

, where h = (h(1), . . . , h(n)) ∈ (Rd)n and
〈h(i), x(i)〉 is defined by (2.5). The shift-invariance of X guarantees that

X⊥ = { h ∈ (Rd)n : 〈h, x〉 = 1 for every x ∈ X }
is a submodule of (Rd)n, and hence Noetherian. In particular there exist finitely
many elements hj = (h(1)

j , . . . , h
(n)
j ) ∈ (Rd)n, j = 1, . . . , s, which generate X⊥ as

an Rd-module, and which therefore satisfy that

X = { x ∈ (Tn)Zd

: 〈umhj , x〉 = 1 for all m ∈ Zd and j = 1, . . . , s }.(2.8)

For t ∈ T and t = (t(1), . . . , t(n)) ∈ Tn set

|t| = min{|t+ k| : k ∈ Z}, |t| = max
1≤i≤n

|t(i)|.(2.9)

For m = (m1, . . . ,md) ∈ Zd put

‖m‖ = max
1≤i≤d

|mi|(2.10)

and set

B(r) = {m ∈ Zd : ‖m‖ ≤ r }.(2.11)

The following proposition was proved in [17], and is a simple consequence of ex-
pansiveness.

Proposition 2.2. Let n ≥ 1, and let X ⊂ (Tn)Zd

be a closed, shift-invariant sub-
group such that the restriction α of the shift-action σ on (Tn)Zd

to X is expansive.
In the notation of (2.9) and (2.11) there exist constants ε, η ∈ (0, 1) and C > 0
with the following property: if x ∈ X ⊂ (Tn)Zd

satisfies that

max
n∈k+B(L)

|xn| < ε

for some k ∈ Zd and L ≥ 0, then

|xk| < CηL.

3. The homoclinic group

Our main object of study is the homoclinic group of an algebraic Zd-action.

Definition 3.1. Let α be an algebraic Zd-action on X . An element x ∈ X is
α-homoclinic (to the identity element 0X of X), or simply homoclinic, if

lim
‖n‖→∞

αnx = 0X .

The subgroup ∆α(X) ⊂ X of all α-homoclinic points is called the homoclinic group
of α.
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For y ∈ X note that αn(y + x) − αn(y) → 0X as ‖n‖ → ∞ if and only if
x ∈ ∆α(X), so that the set of points in X asymptotic to y is exactly y + ∆α(X).
Hence the homoclinic group of α determines the asymptotic behavior of α at all
group elements.

See [1] for the role homoclinic points play in the general theory of dynamical
systems.

If the homoclinic group of a Zd-action is finite, then clearly it must be trivial.
Hence the homoclinic group is either trivial, countably infinite, or uncountable.
The last case can occur (consider the full Zd-shift αRd

on TZd

, or see Examples 7.3
and 7.5). However, for expansive actions the homoclinic group is always countable.

Lemma 3.2. The homoclinic group of an expansive algebraic Zd-action is at most
countable.

Proof. Let α be an expansive algebraic Zd-action on X , and let ρ be a metric on
X compatible with the topology of X . Fix an expansive constant δ > 0 for α. This
means that if ρ(αnx, αny) < δ for all n ∈ Zd, then x = y. For j ≥ 1 and y ∈ X
define

Ej = { x ∈ X : ρ(αnx, 0X) < δ/2 for all n with ‖n‖ > j }
and

Bj(y) = { x ∈ X : ρ(αnx, αny) < δ/2 for all n with ‖n‖ ≤ j }.
We claim that |Ej ∩ Bj(y)| ≤ 1 for all y ∈ X . For if x and x′ are in Ej ∩ Bj(y),
then for ‖n‖ > j we have that

ρ(αnx, αnx′) ≤ ρ(αnx, 0X) + ρ(0X , αnx′) < δ,

while for ‖n‖ ≤ j we have that

ρ(αnx, αnx′) ≤ ρ(αnx, αny) + ρ(αny, αnx′) < δ.

Hence x = x′ by expansiveness. For fixed j the open cover {Bj(y) : y ∈ X} of X
has a finite subcover, so that Ej is finite for every j ≥ 1. Hence ∆α(X) ⊂ ⋃∞

j=1 Ej
is at most countable.

As noted above, some condition is needed to ensure countability of the homoclinic
group. In Example 7.5 we describe a nonexpansive Z3-action with zero entropy and
uncountable homoclinic group.

For a hyperbolic toral automorphism there is a direct geometric description of
its homoclinic group.

Example 3.3. (The homoclinic group of a hyperbolic toral automorphism.) This
example shows that for the Z-action generated by a single hyperbolic automorphism
φ on Tk, the homoclinic group ∆φ(Tk) is the intersection of the stable and the
unstable subgroups of φ, that it is dense in Tk, and that the restriction of φ to
∆φ(Tk) is isomorphic to the transpose of the dual automorphism φ̂ on the dual
group T̂k ∼= Zk.

Let π : Rk −→ Tk be the usual quotient map, and let A ∈ GL(k,Z) be the linear
hyperbolic map such that π ◦ A = φ ◦ π. Then Rk = C ⊕ E, where A contracts on
the subspace C and expands on the subspace E. Observe that C ∩ Zk = {0} since
there are no contracting automorphisms of nontrivial discrete groups. Similarly,
E ∩ Zk = {0}. Hence π is injective on C, and we claim that its image C = π(C)
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is dense in Tk. To verify this assertion, note that C is connected, so that C is
connected and compact in Tk, hence a subtorus that is obviously invariant under
φ. If C 6= Tk, then the quotient automorphism of φ on Tk/C would be a toral
automorphism all of whose eigenvalues are greater than one in modulus, which
would violate preservation of Haar measure. Hence C = Tk, as claimed.

We next show that ∆φ = ∆φ(Tk) = C ∩ E. For suppose that x ∈ ∆φ, and
let x ∈ Rk be a lift of x, so that πx = x. Since π is a local homeomorphism,
it follows from φj(x) → 0 as j → +∞ that Ajx is asymptotic to a lattice point
m ∈ Zk in the sense that Aj(x−m)→ 0 as j → +∞. Thus x ∈ C + m. Similarly,
φj(x) → 0 as j → −∞ shows there is an n ∈ Zk such that x ∈ E + n. Observe
that (C + m) ∩ (E + n) is the singleton {x} and that x = πx ∈ C ∩E. Conversely,
for every m,n ∈ Zk, the point in (C + m) ∩ (E + n) clearly projects under π to an
element of ∆φ. Hence ∆φ = C ∩E.

Define θ : Zk −→ ∆φ by θ(n) = π[C∩ (E+n)]. In the previous discussion the lift
x could be adjusted by a lattice point so that m = 0, showing that θ is surjective.
It is injective since E ∩ Zk = {0} and π is injective on C. Clearly θ ◦ A = φ ◦ θ, so
that the action of φ on ∆φ is isomorphic to the action of A on Zk. The matrix of
the dual automorphism φ̂ on T̂k ∼= Zk with respect to the standard basis on Zk is
the transpose A> of A, verifying the last claim of the first paragraph.

Finally, we prove that ∆φ is dense in Tk. From the above we know that ∆φ =
π[C ∩ (E + Zk)], and we claim that Γ = C ∩ (E + Zk) is dense in C. First note
that Γ ⊂ C is A-invariant, and thus connected since otherwise A would induce a
contracting automorphism of the discrete group Γ modulo its connected component
of the identity. Hence Γ is a subspace of C, and Zk ⊂ Γ ⊕ E, thus Γ ⊕E = Rk, and
so Γ = C. Then density of C = π(C) in Tk proves that ∆φ = π(Γ ) is also dense.

We conclude this example with some remarks whose relevance will become clearer
in Example 4.7. If A is the companion matrix of a monic polynomial with constant
term ±1, then it is easy to construct an explicit conjugacy in GL(k,Z) between
A and A>. Hence in this case Tk contains the countable group ∆φ such that the
action of φ on ∆φ is isomorphic to the action of the dual automorphism φ̂ on T̂k.
However, this fails for general A ∈ GL(k,Z). For example, the matrix A = [ 19 5

4 1 ]
is not conjugate to A> in GL(2,Z) (see [10, p. 81]), and so here (∆φ, φ) is not
isomorphic to (T̂k, φ̂).

Example 3.4. (An ergodic nonhyperbolic toral automorphism having trivial ho-
moclinic group.) Let A ∈ GL(k,Z) have characteristic polynomial χA(t) that is
irreducible over Q and which has some but not all of its eigenvalues on the unit
circle. There is an A-invariant splitting Rk = C ⊕ N ⊕ E, where A contracts on C,
expands on E, and is an isometry on N. Let φ be the automorphism of Tk induced
by A and π : Rk −→ Tk the quotient map. As in the previous example, we obtain
that ∆φ(Tk) = π(C) ∩ π(E). Now (C⊕ E) ∩ Zd = {0}, since otherwise χA(t) would
have a proper factor with integer coefficients, contradicting its irreducibility. Hence
∆φ(Tk) = {0}. This is an example of a (nonexpansive) Z-action with completely
positive entropy having trivial homoclinic group.

In Example 3.3 the homoclinic group is dense. We show in the next section that
for an expansive action on a nontrivial group this occurs exactly when the action
has completely positive entropy. For now, let us point out one direct consequence
of density.
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Proposition 3.5. Let α be an algebraic Zd-action on X, and suppose that ∆α(X)
is dense in X. Then αn is ergodic with respect to Haar measure for every n 6= 0.

Proof. Denote αn by φ, and observe that since n 6= 0 we have ∆α(X) ⊂ ∆φ(X),
so ∆φ(X) is dense in X as well. Let λ denote Haar measure on X . If φ were not
ergodic, there would exist a nonconstant f ∈ L2(X,λ) with f ◦ φ = f (λ-a.e.).
Since ∆φ(X) is dense, there is a t ∈ ∆φ(X) and an ε > 0 such that E = {x ∈ X :
|f(x)− ft(x)| > ε} has λ(E) > 0, where ft(x) = f(x+ t). On the other hand,

(f − ft) ◦ φn = f ◦ φn − (f ◦ φn)φ−nt = f − fφ−nt,

and fφ−nt → f in measure since φ−nt → 0X . Since φ preserves Haar measure, we
would then obtain that

0 < λ(E) = λ(φ−nE) = λ({|(f − ft) ◦ φn| > ε})
= λ({|f − fφ−nt| > ε})→ 0

as n→∞. This contradiction shows that φ is ergodic.

The density of the homoclinic group in this proof plays a role remarkably similar
to that of minimality of the horocycle flow in the proof of ergodicity of the geodesic
flow. In particular, if Tt denotes the translation operator Ttf = ft and Uφf = f ◦φ,
then the commutation relation UφTt = Tφ−1tUφ is crucial to the proof. This relation
is analogous to the Weyl commutation relation between the horocycle and geodesic
flows (see [9] for details).

We conclude this section by briefly discussing the functorial properties of ∆.
Consider the category whose objects are pairs (X,α), where α is an algebraic Zd-
action on the compact abelian group X , and whose morphisms θ : (X,α) −→ (Y, β)
are group homomorphisms θ : X −→ Y so that θ◦αn = βn ◦θ for all n ∈ Z. For the
rest of this section we write ∆(X,α) instead of ∆α(X) to emphasize the functorial
nature of ∆. If θ : (X,α) −→ (Y, β) is a morphism, then the restriction ∆(θ) of θ
to ∆(X,α) has range contained in ∆(Y, β). Hence ∆ is a covariant functor from
the category of algebraic Zd-actions to the category of abelian groups.

Suppose that

0 −−−→ (X,α) θ−−−−→ (Y, β)
φ−−−−−→ (Z, γ) −−−→ 0

is a short exact sequence. It is easy to see that

0 −−→ ∆(X,α)
∆(θ)−−−→ ∆(Y, β)

∆(φ)−−−→ ∆(Z, γ)

is also exact. However, the following example shows that exactness can fail at
(Z, γ).

Example 3.6. (A surjective morphism of algebraic Z-actions that is not surjective
on the corresponding homoclinic groups.) Let A = [ 0 1

1 1 ], and let α be the Z-action on
X = T2 generated by the automorphism ofX induced byA. Consider the morphism
θ : (X,α) −→ (X,α) defined by θ(x1, x2) = (2x1, 2x2), which is clearly surjective.
According to Example 3.3, ∆(X,α) is a free subgroup of X that is isomorphic to Z2.
Hence ∆(θ)

(
∆(X,α)

)
has index 4 in ∆(X,α), so that ∆(θ) : ∆(X,α) −→ ∆(X,α)

is not surjective.
To see the underlying reason making this example work, let K = ker θ and y

be a point in ∆(X,α) that is not in the image of ∆(θ). Then the coset y + K is
“homoclinic” in the sense that αn(y+K) converges to 0+K in the Hausdorff metric
as |n| → ∞. Since K is finite, there are k1, k2 ∈ K such that αn(y + k1)→ 0X as
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n→ −∞ and αn(y + k2)→ 0X as n→ +∞. However k1 6= k2, and so no element
of y +K is itself α-homoclinic.

The category of algebraic Zd-actions is closed under the operations of taking
arbitrary direct products and inverse limits. It is routine to show that ∆ commutes
with both of these operations. We use this observation to show that right exactness
of ∆ can fail more dramatically than indicated by Example 3.6.

Example 3.7. (A surjective morphism from an algebraic Z-action with trivial ho-
moclinic group onto one with dense homoclinic group.) We use the inverse limit of
a collection of Z-actions (Xj , αj) indexed by j ∈ Z. For each j ∈ Z let Xj = T2, let
αj be the automorphism of Xj described in Example 3.6, and let θj : Xj −→ Xj−1

be defined by θj(x) = 2x as in that example. Put

(X,α) = lim←−
({(Xj , αj)}, {θj}

)
.

Since ∆ commutes with inverse limits, we see that

∆(X,α) = lim←−
({∆(Xj , αj)}, {∆(θj)}

)
.

Now each ∆(Xj , αj) is isomorphic to Z2, and ∆(θj) is multiplication by 2. Since no
element of Z2 except 0 is infinitely divisible by 2, it follows that ∆(X,α) is trivial.

Define ψ : X −→ X0 by ψ
(
(xj)

)
= x0. Then ψ is a surjective morphism from

(X,α) to (X0, α0), and ∆(X0, α0) is dense in X0 by Example 3.3.

4. Homoclinic groups of expansive algebraic Zd-actions

In this section we determine which expansive algebraic Zd-actions (where d ≥ 1
as usual) have nontrivial homoclinic group and which have dense homoclinic group.

Theorem 4.1. Let α be an expansive Zd-action by automorphisms of a compact
abelian group X. Then ∆α(X) 6= {0X} if and only if α has positive entropy.

Theorem 4.2. Let α be an expansive Zd-action by automorphisms of a nontrivial
compact abelian group X. Then ∆α(X) is dense in X if and only if α has completely
positive entropy.

Note that Example 3.4 shows that both of these results are false if the expan-
siveness assumption is dropped.

For the proof of Theorem 4.1, by §2 we may assume that X is a closed, shift-
invariant subgroup of (Tn)Zd

for some n ≥ 1, and that α is the shift-action of Zd

on X . For every x = (x(1), . . . , x(n)) ∈ X ⊂ (Tn)Zd

and n ∈ Zd we set xn =
(x(1)

n , . . . , x
(n)
n ) ∈ Tn and define |xn| and ‖n‖ by (2.9) and (2.10). The following

lemma is an immediate consequence of Proposition 2.2.

Lemma 4.3. Let α be an expansive algebraic Zd-action on X and assume that
X ⊂ (Tn)Zd

as above. There is a positive constant η < 1 such that for every
x ∈ ∆α(X) there is a C > 0 such that |xn| < C η‖n‖ for all n ∈ Zd.

Thus homoclinic points for expansive algebraic Zd-actions must decay exponen-
tially fast, and this is crucial to what follows. Note that the expansive hypothesis is
necessary, since, for example, the shift-action on TZd

has homoclinic points which
decay arbitrarily slowly.

Lemma 4.4. Let α be an expansive algebraic Zd-action on X. If ∆α(X) 6= {0X},
then h(α) > 0.
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Proof. We use the notations above and assume that X ⊂ (Tn)Zd

. Since α is expan-
sive there exists a δ > 0 such that if x = (xn) ∈ X ⊂ (Tn)Zd

and supn∈Zd |xn| < δ,
then x = 0X . If ε, r > 0 we say that a set E ⊂ X is (r, ε)-separated if there exists,
for every pair x, x′ of distinct points in E, a coordinate n ∈ B(r) with |xn−x′n| ≥ ε.
We denote by s(r, ε) the maximum of the cardinalities of all (r, ε)-separated sets in
X and observe that

h(α) = lim sup
r→∞

1
(2r + 1)d

log s(r, ε)

for every ε ∈ (0, δ) (see [8, Appendix A] or [15]).
If there exists a nonzero α-homoclinic point x ∈ X we can choose an ε ∈ (0, δ)

with 2ε < |xn| for some n ∈ Zd. Adjusting by an iterate of α if necessary, we may
assume that n = 0. Apply Lemma 4.3 to find an r ≥ 0 with |xn| < ε for every
n ∈ Zd r B(r). Lemma 4.3 also allows us to find an integer k ≥ 2r for which∑

0 6=n∈Zd

|xkn| < ε.

Let L ≥ 1 and put, for every ω = (ωn) ∈ {0, 1}B(L),

y(ω) =
∑

n∈B(L)

ωnσ
kn(x).

Our choices of ε, r and k imply that the set

E(L) = {y(ω) : ω ∈ {0, 1}B(L)} ⊂ X
is (kL, ε)-separated. Since E(L) has cardinality |E(L)| = 2(2L+1)d

we obtain that

h(α) = lim sup
r→∞

1
(2r + 1)d

log s(r, ε)

≥ lim
L→∞

log 2
(2L+ 1)d

(2kL+ 1)d
=

log 2
kd

> 0.

Lemma 4.5. Let f ∈ Rd be a (possibly reducible) Laurent polynomial such that
the Zd-action α = αRd/fRd

on X = XRd/fRd
is expansive and mixing (and so has

positive entropy by Lemma 2.1). Then the homoclinic group ∆α(X) is countable
and dense in X.

Furthermore there exists a group isomorphism τ : Rd/fRd −→ ∆α(X) with αn ·
τ(h) = τ(unh) for every h ∈ Rd/fRd and n ∈ Zd. Therefore the Zd-action obtained
by restricting α to ∆α(X) is isomorphic to the Zd-action on X̂ dual to α.

Proof. As in §2 we represent X as a closed, shift-invariant subgroup of TZd

and α
as the shift-action of Zd to X . Let `2(Zd,R) denote the Hilbert space of square-
summable real-valued functions on Zd, and define the convolution of v, w ∈ `2(Zd,R)
by (v ∗ w)n =

∑
k∈Zd vkwn−k. For each h ∈ Rd let h̃ ∈ `2(Zd,R) be defined by

h̃n = ch(−n). If we use σ for the shift-action of Zd on `2(Zd,R), then the sign
reversal in defining h̃ means that h(σ)v = h̃ ∗ v for all v ∈ `2(Zd,R).

The Fourier transform sends each v = (vn) ∈ `2(Zd,R) to the function v̂ : Td −→
C defined by

v̂(t) =
∑
n∈Zd

vne
2πi(t·n),
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where t = (t1, . . . , td) and t · n = t1n1 + · · · + tdnd. By Plancherel’s formula

v̂ ∈ L2(Td, λTd), and we have (h̃ ∗ v)̂= ̂̃
h v̂ for h ∈ Rd and v ∈ `2(Zd,R).

Let F denote the Fourier transform of f̃ . By Lemma 2.1(1), expansiveness of α
implies that F (t) 6= 0 for every t ∈ Td, so that 1/F ∈ C∞(Td). Since

(1/F )(−t) = 1/F (t),

the Fourier coefficients of 1/F are real. By applying the inverse Fourier transform
to 1/F we obtain an element wM ∈ `2(Zd,R) with ŵM = 1/F and∑

n∈Zd

‖n‖k |wM
n | <∞

for all k ≥ 1. (Indeed, 1/F is real-analytic, so that wM
n decays exponentially fast,

but we do not need this stronger statement.) In particular, for each h ∈ Rd the
point h̃ ∗ wM = h(σ)wM ∈ `2(Zd,R). Also note that f̃ ∗ wM, as an element of
`2(Zd,R), is the indicator function of {0}.

Define η : `2(Zd,R) −→ TZd

by reducing each coordinate (mod 1), and put xM =
η(wM). We call xM the fundamental homoclinic point of α. The restriction of η to

∆ = { h̃ ∗ wM : h ∈ Rd }
is a group homomorphism of ∆ into the homoclinic group ∆α(X) with the property
that

η(h̃ ∗ wM) = h(σ)(xM)

for all h ∈ Rd. We claim that

η(∆) = ∆α(X)(4.1)

and

{ h ∈ Rd : η(h̃ ∗ wM) = 0X } = fRd.(4.2)

In order to prove (4.1), let x ∈ ∆α(X). Denote the set of all elements in `2(Zd,R)
with integral values by `2(Zd,Z). By Lemma 4.3 we can find y ∈ `2(Zd,R) with
η(y) = x. Now 0 = f(σ)x = η(f̃ ∗ y), so f̃ ∗ y ∈ `2(Zd,Z). Since yn → 0 as
‖n‖ → ∞ and f̃ has finite support, it follows that (f̃ ∗ y)n → 0 as ‖n‖ → ∞. Since

each (f̃ ∗ y)n ∈ Z, we see there is an h ∈ Rd with h̃ = f̃ ∗ y. Thus ŷ = ̂̃
h/F , so

y = h̃ ∗wM and x = η(h̃ ∗wM). This proves that η(∆) = ∆α(X), establishing (4.1).
For (4.2), observe that every h ∈ Rd with η(h̃ ∗ wM) = h(σ)xM = 0 satisfies that

h̃ ∗ wM = g̃ for some g ∈ Rd, and by applying the inverse Fourier transform we see
that h = fg ∈ fRd. This completes the proof that the map τ(h) = η(h̃ ∗wM) is an
isomorphism from Rd/fRd to ∆α(X).

To prove density of ∆α, let g ∈ ∆⊥
α . Then for every h ∈ Rd we have that

1 = 〈g, η(h̃ ∗ wM)〉 = exp
[
2πi(g̃ ∗ h̃ ∗ wM)0

]
= exp

[
2πi

((
g̃ ∗ wM) ∗ h̃)

0

]
,

so that g̃ ∗wM ∈ `2(Zd,Z). Hence g̃ ∗wM = k̃ for some k ∈ Rd, and g̃ = g̃ ∗wM ∗ f̃ =
k̃ ∗ f̃ implies that g = kf ∈ fRd. It follows that ∆⊥

α = X⊥, so that ∆α is dense in
X .
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Example 4.6. (Calculation of the fundamental homoclinic point for an expansive
action.) Let f(u1, u2) = 3 − u1 − u2. Clearly VC(f) ∩ S2 = ∅, so that αR2/fR2 is
expansive by Lemma 2.1(1). We compute the fundamental homoclinic point xM as
follows.

The Fourier transform F of f̃ is F (s, t) = 3 − e−2πis − e−2πit. We can compute
the inverse Fourier transform of 1/F explicitly using a geometric series:

1
F (s, t)

=
1
3

[
1

1− 1
3 (e−2πis + e−2πit)

]
=

1
3

∞∑
k=0

3−k(e−2πis + e−2πit)k

=
∞∑
m=0

∞∑
n=0

3−(m+n+1)

(
m+ n

n

)
e−2πi(ms+nt).

Hence wM is given by

wM
(−m,−n) =

3−(m+n+1)

(
m+ n

n

)
if m ≥ 0 and n ≥ 0,

0 otherwise.

Every homoclinic point for αR2/fR2 is therefore an integral combination of trans-
lates of xM = η(wM), the reduction of wM (mod 1).

A similar analysis applies to every polynomial in Rd having one coefficient whose
absolute value strictly exceeds the sum of the absolute values of its other coefficients.

Example 4.7. (Calculation of the fundamental homoclinic point for a hyperbolic
toral automorphism.) Let A = [ 0 1

1 1 ], and let φ be the automorphism of T2 induced
by A. The Z-action generated by φ is an instance of our general algebraic framework
as follows. Let f(u1) = u2

1 − u1 − 1 and α = αR1/fR1 be the corresponding Z-
action on X = XR1/fR1 ⊂ TZ. Then ψ : X −→ T2 defined by ψ(x) = (x0, x1) is
easily checked to be an isomorphism of α with φ. In Example 3.3 we described
∆φ(T2) geometrically. Here we use the notations and proof of the previous lemma
to compute the fundamental homoclinic point xM of α analytically.

The Fourier transform of f̃ is F (t) = e−4πit − e−2πit − 1. Let λ = (1 +
√

5)/2
and µ = (1−√5)/2 be the roots of f . Then

1
F (t)

=
1

(e−2πit − λ)(e−2πit − µ)
=

1/
√

5
e−2πit − λ −

1/
√

5
e−2πit − µ.

Now

1/
√

5
e−2πit − λ = − 1

λ
√

5
1

1− λ−1e−2πit
=

∑
n≥0

(
− 1√

5
λ−n−1

)
e−2πint

=
∑
n≤0

(
− 1√

5
λn−1

)
e2πint,

and

− 1/
√

5
e−2πit − µ = − 1√

5 e−2πit

1
1− µe2πit =

∑
n≥1

(
− 1√

5
µn−1

)
e2πint.
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Hence

wM
n =


− 1√

5
µn−1 if n ≥ 1,

− 1√
5
λn−1 if n ≤ 0.

Using this one can verify directly the crucial property that

(f̃ ∗ wM)n = wM
n+2 − wM

n+1 − wM
n =

{
1 if n = 0,
0 otherwise.

Thus xM = η(wM) is the fundamental homoclinic point of α.
To compare this result to the geometric construction in Example 3.3, recall the

notation used there. It is then easy to compute that

(C + (−1, 0)) ∩ E = {(wM
0 , w

M
1 )} = {x},

and so πx = ψ(xM) ∈ ∆φ(T2).
This brings up a subtle point related to the remarks at the end of Example 3.3.

Let f(u1) ∈ R1 be monic with constant term ±1 and have degree k. Denote by A
the transpose of the companion matrix of f . The matrix of multiplication by u1 on
R1/fR1

∼= Zk with respect to the standard basis {1, u1, . . . , u
k−1
1 } is A>, while in

our formalism the matrix representing φ on Tk is A. Yet Lemma 4.5 implies that
these matrices are conjugate in GL(k,Z). The explanation for this discrepancy is
as follows. There is an isomorphism θ : Zk −→ ∆φ as in Example 3.3, and the
matrix of φ on ∆φ with respect to the image of the standard basis for Zk under θ
is indeed A. But Lemma 4.5 shows that if tM ∈ ∆φ is the fundamental homoclinic
point for φ, then {tM, φ(tM), . . . , φk−1(tM)} is also a basis for ∆φ, and with respect
to this basis φ has matrix A>. It is this basis, not the standard one, that is used
in the proof of Lemma 4.5. We are grateful to Manfred Einsiedler for pointing this
out to us.

Proof of Theorem 4.1. Let α be an expansive algebraic Zd-action onX . If ∆α(X) 6=
{0X}, then h(α) > 0 by Lemma 4.4.

Conversely, suppose that h(α) > 0. Then parts (1) and (3) of Lemma 2.1 guaran-
tee that at least one prime ideal p associated to the Noetherian Rd-module M = X̂
is principal and satisfies that αRd/p is mixing and expansive. By Lemma 2.1(5) we
can find a Noetherian Rd-module N ⊃M with the properties described there, and
we set β = αN and Y = XN . According to the description of N there exists a
submodule N ′ ⊂ N with N/N ′ ∼= Rd/p, and by dualizing we obtain a β-invariant
subgroup Y ′ ⊂ Y with Y ′ = N̂/N ′ ∼= R̂d/p. If β′ ∼= αRd/p is the restriction of β to
Y ′, then Lemma 4.5 shows that ∆β′(Y ′) is dense in Y ′. Lemma 2.1(3) shows that
h(β′) = h(αRd/p) > 0, and Lemma 4.5 yields that {0Y } 6= ∆β′(Y ′) ⊂ ∆β(Y ).

Let Z ⊂ Y be the kernel of the surjective group homomorphism τ : Y −→ X dual
to the inclusion M ⊂ N . Then Z is a closed, β-invariant subgroup of Y whose dual
is N/M . Lemma 2.1(5) shows that β = αN is expansive and so has finite entropy.
The addition formula for entropy in [8, Appendix A] implies that the restriction βZ
of β to Z has entropy h(βZ) = h(αN )− h(αM ) = 0. Since β is expansive, so is βZ ,
so that Lemma 4.4 shows that ∆βZ (Z) = ∆β(Y )∩Z = {0Y }. Hence the restriction
of τ : Y −→ X to ∆β(Y ) is injective. As ∆β(Y ) 6= {0Y } and τ(∆β(Y )) ⊂ ∆α(X),
we conclude that ∆α(X) 6= {0X}.
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We begin the proof of Theorem 4.2 with a definition.

Definition 4.8. Let f ∈ Rd be an irreducible polynomial such that αRd/fRd
is

expansive and mixing, let k ≥ 1, and let

R = Rd/f
kRd.(4.3)

Suppose that n ≥ 1 and define

[a, b] =
n∑
i=1

aibi ∈ R(4.4)

for every a = (a1, . . . , an), b = (b1, . . . , bn) ∈ Rn. If N ⊂ Rn is an R-submodule we
set

N ′ = {b ∈ Rn : [a, b] = 0R for every a ∈ N},
N ′′ = (N ′)′ = {a ∈ Rn : [a, b] = 0R for every b ∈ N ′} ⊃ N.(4.5)

Lemma 4.9. Let R be as in Definition 4.8, let n ≥ 1, let N ⊂ Rn be an R-module,
and define the R-modules N ′, N ′′ ⊂ Rn as in (4.5). We regard the R-modules
N ⊂ N ′′ ⊂ Rn as Rd-modules and consider the closed, shift-invariant subgroups

X = XRn = R̂n ⊂ (̂Rd)n = (Tn)Zd

,

Z = (N ′′)⊥ ⊂ Y = N⊥ ⊂ X ⊂ (Tn)Zd

.

Then the restrictions to X, Y and Z of the shift-action σ of Zd on (Tn)Zd

are
expansive, and the closure ∆σ(Y ) of the homoclinic subgroup ∆σ(Y ) ⊂ Y is equal to
Z. Furthermore there exists a group isomorphism τ : N ′ −→ ∆σ(Y ) with σn ·τ(a) =
τ(una) for every a ∈ N ′ and n ∈ Zd.

Proof. For h ∈ Rd and x ∈ XR = R̂ = (Rd/fkRd)̂⊂ TZd

we define h(σ)x ∈ XR

by (2.4) and observe that h(σ)x = 0TZd whenever x ∈ XR and h ∈ fkRd. Hence
we may abuse notation and set

a(σ)x = h(σ)x

for every x ∈ XR and a = h+ fkRd ∈ R. With this convention we can write, for
any submodule L ⊂ Rn, the group L⊥ ⊂ XRn = (XR)n in the form

L⊥ =
{
x = (x(1), . . . , x(n)) ∈ (XR)n :

n∑
i=1

ai(σ)x(i) = 0XR for every (a1, . . . , an) ∈ L
}
.

(4.6)

According to Lemma 4.5, the homoclinic group ∆σ(X) of the shift-action σ of Zd

on X ⊂ (Tn)Zd

is given by

∆σ(X) = { (h1(σ)xM, . . . , hn(σ)xM) : h = (h1, . . . , hn) ∈ Rn }.
By (4.6), a homoclinic point (h1(σ)xM, . . . , hn(σ)xM)[0] ∈ ∆σ(X) lies in N⊥ = Y if
and only if

n∑
i=1

ai(σ) · hi(σ)xM = [a, h](σ)xM = 0XR

for every a = (a1, . . . , an) ∈ N . From the proof of Lemma 4.5 we know that g = 0R
is the only element in R having g(σ)xM = 0XR . Hence (h1(σ)xM, . . . , hn(σ)xM) ∈
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N⊥ = Y if and only if [h, a] = 0R for every a ∈ N or, equivalently, if and only if
h ∈ N ′.

This shows that

∆σ(Y ) = { (h1(σ)xM, . . . , hn(σ)xM) : h = (h1, . . . , hn) ∈ N ′ }
and establishes the promised isomorphism τ : N ′ −→ ∆σ(Y ). Furthermore we see
that an element b = (b1, . . . , bn) ∈ Rn annihilates every σ-homoclinic point in Y if
and only if b ∈ N ′′, and hence that ∆σ(Y ) = Z.

The proof of the following lemma is based on ideas of P. Smith and R. Wiegand,
which we use with their kind permission. Roughly speaking, this result would
be easy if R were a field using a dimension argument, so we localize R at f to
approximate a field and replace vector space dimension with module length.

Lemma 4.10. Let R be as in Definition 4.8, let n ≥ 1, and let N ⊂ Rn be an
R-module. Then there exists an element g ∈ Rr fR with gN ′′ ⊂ N .

Proof. Let S = R r fR be the semigroup of regular elements in R. Then S 6= ∅
since f is irreducible and hence not a unit by definition. Let Q = S−1R be the ring
of fractions of R, which is the localization of R at f . Then every ideal of Q is of
the form aj = 〈f j〉 = f jQ for some j ∈ {1, . . . , k}, and

{0Q} = ak ⊂ ak−1 ⊂ · · · ⊂ a1 ⊂ Q.
Furthermore, if a ⊂ Q is an ideal, and if γ : a −→ Q is a Q-module homomorphism,
then a = 〈f j〉 for some j ∈ {1, . . . , k}, and

0Q = γ(0Q) = γ(fk−jf j) = fk−jγ(f j),

so that γ(f j) = gf j for some g ∈ Q. By setting γ̄(h) = gh for every h ∈ Q we have
extended γ : a −→ Q to a Q-module homomorphism γ̄ : Q −→ Q.

We claim that, if M1 ⊂M2 are Q-modules, then every Q-module homomorphism
θ : M1 −→ Q can be extended to a Q-module homomorphism θ̄ : M2 −→ Q (i.e.
that Q is injective). Indeed, let M1 ⊂ M2 be a maximal Q-module for which
there exists such an extension θ̄ : M1 −→ Q of θ. If M1 6= M2, then we choose
a ∈ M2 r M1, set a = {h ∈ Q : h · a ∈ M1}, define a Q-module homomorphism
γ : a −→ Q by γ(h) = θ̄(h ·a), and apply the above observation to find an extension
γ̄ : Q −→ Q of γ. Then the Q-module homomorphism θ̄′ : M1 +Q ·a −→ Q, defined
by θ̄′(b+ h · a) = θ̄(b) + γ̄(h) for every h ∈ Q and b ∈M1, is a proper extension of
θ̄. This contradiction implies that θ can indeed be extended to all of M2.

For every Q-module M we denote by M∗ = HomQ(M,Q) the set of all Q-
module homomorphisms b : M −→ Q. Then M∗ is a Q-module with respect to the
operation (h, b) 7→ h · b, defined by (h · b)(a) = b(h · a) for every h ∈ Q, b ∈ M∗

and a ∈ M . The module M∗ is called the dual module of M . In this terminology
we can rephrase the above extension property by saying that, for every short exact
sequence

0 −→M1
ι−−→M2 −→M3 −→ 0

of Q-modules, where ι is the inclusion map, the sequence

0 −→M∗
3 −→M∗

2
ι∗−−→M∗

1 −→ 0(4.7)

is exact, where ι∗ is the restriction map.
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For every Q-module K and nonzero a ∈ K the ideal a = ann(a) = {h ∈ Q :
h·a = 0Q} is of the form a = 〈f j〉 for some j ∈ {1, . . . , k}, and by setting b = f j−1 ·a
we obtain a nonzero element in K whose annihilator satisfies that ann(b) = 〈f〉. It
follows that there exists, for every nonzero Noetherian Q-module K, a filtration

{0K} = K0 ⊂ K1 ⊂ · · · ⊂ Kl = K

such that Kj/Kj−1
∼= Q/〈f〉 for every j = 1, . . . , l. The integer l = l(K) ≥ 1 is

independent of the specific filtration chosen and is called the length of K. From
the independence of l(K) of the specific filtration we conclude that if

0 −→ K1 −→ K2 −→ K3 −→ 0

is a short exact sequence of Noetherian Q-modules, then

l(K2) = l(K1) + l(K3).(4.8)

If l(K) = 1, then K ∼= Q/〈f〉 ∼= K∗, and l(K∗) = l(K) = 1. Repeated appli-
cation of (4.7) and (4.8) shows that l(K) = l(K∗) for every Noetherian Q-module
K.

Consider the Q-module M = Q ⊗R N ⊂ Q ⊗R Rn = Qn, define the Q-modules
M ′,M ′′ ⊂ Qn as in (4.5), and observe that M ′ = Q ⊗R N ′ and M ′′ = Q ⊗R N ′′.
By applying the above discussion to M ⊂M ′′ and M ′ we see that the sequences

0 −→M −→ Qn −→ L −→ 0,

0 −→ L∗ −→ (Qn)∗ −→M∗ −→ 0
(4.9)

are exact, where L = Qn/M , (Qn)∗ ∼= Qn and L∗ = M ′. By replacing M with M ′

in the second exact sequence in (4.9) we obtain that the sequence

0 −→M ′′ −→ Qn −→ (M ′)∗ −→ 0(4.10)

is again exact, and that

kn = l(Qn) = l(M) + l(L) = l(L∗) + l(M∗) = l(M ′) + l(M) = l(M ′′) + l(M ′).

Hence l(M) = l(M ′′), and therefore M = M ′′, since M ⊂ M ′′, l(M ′′) = l(M) +
l(M ′′/M), and l(M ′′/M) = 0.

We have proved that

{0} = M ′′/M = (Q⊗R N ′′)/(Q⊗R N) = Q ⊗R (N ′′/N),

i.e. that there exists, for every a ∈ N ′′, an element g ∈ Rr fR with g · a ∈ N . As
N ′′ is Noetherian we can find a single element g ∈ R r fR with g · N ′′ ⊂ N , as
claimed.

Lemma 4.11. Assume the hypotheses of Lemma 4.9 and also that Y 6= {0X}.
Then the following conditions are equivalent.

(1) The restriction of the shift-action σ of Zd on R̂n ⊂ (Tn)Zd

to Y = N⊥ has
completely positive entropy;

(2) ∆σ(Y ) is dense in Y ;
(3) N ′′ = N .

Proof. (1) ⇒ (2) ⇒ (3): Regard N,N ′′ ⊂ Rn as Rd-modules. Then Ŷ/Z =
(Rn/N)/(Rn/N ′′) ∼= N ′′/N , so that the Zd-action σY/Z induced by the shift-action
σ on X is isomorphic to αN ′′/N . Lemma 4.10 implies that there is a nonunit g such
that gN ′′ ⊂ N , so that each prime ideal associated with the Rd-module N ′′/N is
nonprincipal since it contains both f and an irreducible factor of g. Then Lemma
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2.1(3) shows that h(αN ′′/N ) = 0. Since σY has completely positive entropy, the
factor σY/Z must be trivial. Hence Z = ∆σ(Y ) = Y and N ′′ = N .

(2) ⇒ (1): Since Y 6= {0X} and ∆σ(Y ) is dense in Y , then the entropy h(σY )
of the shift-action σY of Zd on Y is positive by Lemma 4.4. If σY does not have
completely positive entropy, then Theorem 6.4 of [8] implies there would exist a
closed, shift-invariant proper subgroupK ⊂ Y with h(σY/K) = 0. Since σY/K would
be expansive (see [14, Cor. 3.11]), Lemma 4.4 would then imply that ∆σ(Y ) ⊂ K,
contradicting (2). Hence (2) ⇒ (1).

(3) ⇒ (2): This follows from Lemma 4.9.

Proof of Theorem 4.2. Let α be an expansive and mixing algebraic Zd-action on
X . If ∆α(X) is nontrivial and dense in X , then we see exactly as in the proof of
the implication (2) ⇒ (1) in Lemma 4.11 that α has completely positive entropy.

Conversely, if α has completely positive entropy we denote by M = X̂ the
Noetherian Rd-module defined by (2.1)–(2.2), write {p1, . . . , pm} for the set of as-
sociated prime ideals of M , and note that, by Lemma 2.1, pj is principal and
αRd/pj

expansive and mixing for every j = 1, . . . ,m. We choose irreducible Lau-
rent polynomials f1, . . . , fm ∈ Rd with pj = 〈fj〉 = fjRd for j = 1, . . . ,m and write
N = N (1) ⊕ · · · ⊕ N (m) ⊃ M for the Noetherian Rd-module appearing in Lemma
2.1(5). If we can prove that ∆α

N(j) (XN(j)) is dense in XN(j) for every j = 1, . . . , n,
then

∆αN (XN ) =
m∏
j=1

∆α
N(j) (XN(j))

is dense in XN , and the surjective group homomorphism τ : XN −→ X = XM dual
to the inclusion M ⊂ N satisfies that τ · αn

N = αn · τ for every n ∈ Zd, and that
τ(∆αN (XN )) ⊂ ∆α(X). In particular, ∆α(X) is dense in X .

We fix j ∈ {1, . . . ,m} and recall from Lemma 2.1(5) that N (j) has a filtration

N (j) = N (j)
sj
⊃ · · · ⊃ N (j)

0 = {0}(4.11)

with N
(j)
l /N

(j)
l−1
∼= Rd/fjRd for every l = 1, . . . , sj . Since pj = 〈fj〉 is the only

prime ideal associated with N (j), it follows that αN(j) is mixing and has completely
positive entropy by parts (2) and (4) of Lemma 2.1. The filtration (4.11) allows us
to regard N (j) as a module over the ring R = Rd/f

sj

j Rd, since fsj

j · a = 0N(j) for
every a ∈ N (j).

Choose elements a1, . . . , an in N (j) with N (j) = R ·a1 + · · ·+R ·an and consider
the surjective R-module homomorphism κ : Rn −→ N (j) defined by κ(h1, . . . , hn) =
h1 · a1 + · · · + hn · an for every (h1, . . . , hn) ∈ Rn. If K is the kernel of κ, then
K ⊂ Rn is an R-submodule (and hence also an Rd-submodule) of Rn, and

XN(j) = K⊥ ⊂ R̂n ⊂ (̂Rd)n = (Tn)Zd

.

As αN(j) has completely positive entropy, it follows from Lemma 4.11 that
∆α

N(j) (XN(j)) is dense in XN(j) = K⊥, as claimed. This completes the proof
of Theorem 4.2.

Remark 4.12. Let α be an expansive algebraic Zd-action on X . The previous proof
shows that Z = ∆α(X) is the maximal closed α-invariant subgroup of X on which
α has completely positive entropy. This gives an intrinsic description of the Pinsker
algebra of α as the inverse image of the Borel σ-algebra of X/Z under the quotient
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map X −→ X/Z (cf. [8, §6]). Hence despite the uncomplicated dynamics of indi-
vidual homoclinic points in X , their closure is precisely the largest closed invariant
subgroup of X on which the action is Bernoulli (see [15, Thm. 23.1]).

5. Specification

Specification is an orbit tracing property that has proved useful in the study of
expansive homeomorphisms. Ruelle [12] investigated the extension of this notion
to Zd-actions, motivated by statistical mechanics. Our purpose in this section is to
show that expansive algebraic Zd-actions provide a large class of Zd-actions having
specification.

First recall the definition of the norm ‖ · ‖ on Zd from (2.10) and of the cube
B(r) ⊂ Zd from (2.11).

Definition 5.1. (1) Let T be a continuous Zd-action on a compact metric space
(X, ρ). The action T has weak specification if there exists, for every ε > 0, an
integer p(ε) ≥ 1 with the following property: for every finite collection Q1, . . . ,Qt
of rectangles Qj =

∏d
i=1{ai, . . . , bi} ⊂ Zd with

dist(Qj ,Qk) = min
m∈Qj ,n∈Qk

‖m− n‖ ≥ p(ε) for 1 ≤ j < k ≤ t,(5.1)

and for every collection of points x(1), . . . , x(t) in X , there exists a point y ∈ X
with

ρ(Tny, Tnx(j)) < ε for all n ∈ Qj, 1 ≤ j ≤ t.(5.2)

(2) The Zd-action T has strong specification if there exists, for every ε > 0,
an integer p(ε) ≥ 1 with the following property: for every collection of rectangles
Q1, . . . ,Qt in Zd satisfying (5.1) and every subgroup Γ ⊂ Zd with

dist(Qj + q,Qk) = min
m∈Qj+q,n∈Qk

‖m− n‖ ≥ p(ε)(5.3)

whenever 1 ≤ j, k ≤ t and q ∈ Γ r {0}, and for every collection of points
x(1), . . . , x(t) in X , there exists a point y ∈ X satisfying (5.2) and with Tmy = y
for every m ∈ Γ .

(3) Let α be an algebraic Zd-action on X with homoclinic group ∆α(X), and
let ρ be a metric on X consistent with its topology. The action α has homoclinic
specification if there exists, for every ε > 0, an integer p(ε) ≥ 1 with the following
property: for every rectangle Q ⊂ Zd and every x ∈ X there exists an α-homoclinic
point y ∈ ∆α(X) with

ρ(αnx, αny) < ε for all n ∈ Q,
ρ(0X , αny) < ε for all n ∈ Zd r (Q+ B(p(ε))).

Note that each of these three properties is preserved under taking quotients.
This section is devoted to the proof of the following theorem.

Theorem 5.2. Let α be an expansive algebraic Zd-action on a nontrivial compact
abelian group X. Then the following are equivalent.

(1) α has completely positive entropy;
(2) α has weak specification;
(3) α has strong specification;
(4) α has homoclinic specification.
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The proof of this requires three lemmas. For the first of these we assume that
f ∈ Rd is a (possibly reducible) polynomial such that the Zd-action α = αRd/fRd

on X = XRd/fRd
is expansive. As in §2 we view X as the closed, shift-invariant

subgroup

X = {x ∈ TZd

: f(σ)x = 0TZd}
and identify α with the restriction σX of the shift-action σ on TZd

to X . If σ also
denotes the Zd-shift on `∞(Zd,R), then for every h ∈ Rd and w ∈ `∞(Zd,R) the
point h(σ)w =

∑
n∈Zd ch(n)σnw ∈ `∞(Zd,R). If we define h̃ as in the proof of

Lemma 4.5, then h(σ)w = h̃ ∗ w. Let `∞(Zd,Z) ⊂ `∞(Zd,R) be the subgroup of
bounded, integer-valued maps from Zd to Z and let η : `∞(Zd,R) −→ TZd

be the
map that reduces each coordinate (mod 1). Then

η−1(X) =
{
v ∈ `∞(Zd,R) : f(σ)v ∈ `∞(Zd,Z)

}
.

Let ‖ · ‖∞ denote the supremum norm on `∞(Zd,R), | · | : T −→ R be defined by
(2.9), and write w ∈ `∞(Zd,R) as w = (wn : n ∈ Zd).

Lemma 5.3. For every ε > 0 and L > 0 there is an r > 0 such that if u, v ∈
η−1(X), ‖u‖∞ ≤ L, ‖v‖∞ ≤ L, and (f(σ)u)n = (f(σ)v)n for all n ∈ B(r), then
|η(u)0−η(v)0| < ε. Consequently, if u, v ∈ η−1(X) and f(σ)u = f(σ)v, then u = v.

Proof. Suppose that for some ε > 0 and L > 0 we can find, for every r > 0, elements
u(r), v(r) ∈ η−1(X) with ‖u(r)‖∞ ≤ L, ‖v(r)‖∞ ≤ L, (f(σ)u(r))n = (f(σ)v(r))n for
all n ∈ B(r), and |η(u(r))0 − η(v(r))0| ≥ ε. Then the sequence {u(r) − v(r) : r =
1, 2, . . .} has a limit point w ∈ `∞(Zd,R) in the weak*-topology (i.e. the topology
of pointwise convergence) such that |w0| ≥ ε and f(σ)w = 0. Hence η(tw) ∈ X
for all t ∈ R, and by choosing t sufficiently small we have that η(tw) 6= 0X and
supn∈Zd |η(tw)n| is arbitrarily small, contradicting expansiveness of α = σX .

The second assertion follows easily from the first by taking limits.

Lemma 5.4. If αRd/fRd
is expansive, then it has both homoclinic and strong spec-

ification.

Proof. As in the proof of Lemma 4.5 we regard X as a closed, shift-invariant sub-
group of TZd

and α as the restriction σX to X of the shift-action σ of Zd on TZd

.
The proof of Lemma 4.5 shows that ∆α(X) = ∆σX (X) is dense in X , and that
every element y ∈ ∆α(X) is of the form y = h(σ)xM for some h ∈ R = Rd/fRd.
Here xM = η(wM), where wM ∈ `∞(Zd,R) is the unique point in η−1(X) with
(f(σ)wM)0 = 1 and (f(σ)wM)n = 0 for all n ∈ Zd r {0}, i.e., f̃ ∗wM is the convolu-
tional identity for `∞(Zd,R).

By Lemma 4.3 we have that

‖wM‖1 =
∑
n∈Zd

|wM
n | <∞.

Write f =
∑

n∈Zd cf (n) and put

‖f‖ =
∑
n∈Zd

|cf (n)|.

Let L = max{1, ‖wM‖1 · ‖f‖}.
Fix ε > 0. Apply Lemma 5.3 with this choice of ε and L to find an integer

r > 0 such that every pair of points u, v ∈ η−1(X) ⊂ `∞(Zd,R) with ‖u‖∞ ≤ L,
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‖v‖∞ ≤ L, and (f(σ)u)n = (f(σ)v)n for every n ∈ B(r) satisfies that |η(u)0 −
η(v)0| < ε. It follows that if Q ⊂ Zd is a rectangle, and if u, v ∈ η−1(X) satisfy
that ‖u‖∞ ≤ L, ‖v‖∞ ≤ L, and (f(σ)u)n = (f(σ)v)n for every n ∈ Q+ B(r), then
|η(u)n − η(v)n| < ε for all n ∈ Q. By increasing r if necessary, Lemma 4.3 allows
us to assume in addition that ∑

n∈ZdrB(r)

|wM
n | < ε/‖f‖.

Take an arbitrary element x ∈ X , choose u ∈ `∞(Zd,R) with ‖u‖∞ ≤ 1 and
η(u) = x, and consider the point z = f(σ)u ∈ `∞(Zd,Z). If Q ⊂ Zd is a fixed
rectangle, define h =

∑
m∈Zd ch(m)um ∈ Rd by

ch(m) =

{
zm if m ∈ Q+ B(r),
0 otherwise.

Let v = h(σ)wM and put y = h(σ)xM = η(h̃ ∗ wM) ∈ ∆α(X). Since f̃ ∗ wM is
the convolutional identity in `∞(Zd,R), it follows that f(σ)v = f(σ)h(σ)wM =
h̃ ∗ f̃ ∗ wM = h̃. Hence(

f(σ)v
)
n

=
(
f(σ)h(σ)wM)

n
= ch(n) =

(
f(σ)u

)
n

for every n ∈ Q+ B(r) and(
f(σ)v

)
n

=
(
f(σ)h(σ)wM)

n
= 0

for every n ∈ Zd r (Q+ B(r)). Our choice of r implies that

|xn − yn| < ε for every n ∈ Q,
|yn| < ε for every n ∈ Zd r (Q+ B(2r)).

This is easily seen to imply the homoclinic specification of α.
To check strong specification for α we assume that ε, L, and r are chosen as

above, and set p(ε) = 2r. Consider finitely many points x(1), . . . , [0]x(t) in X ,
rectangles Q1, . . . ,Qt in Zd, and a subgroup Γ ⊂ Zd satisfying (5.1) and (5.3). For
each of these rectangles Qj we find a homoclinic point y(j) with

|x(j)
n − y(j)

n | < ε for every n ∈ Qj ,∑
i=1,...,t
i6=j

|y(i)
n |+

t∑
i=1

∑
0 6=m∈Γ

|y(i)
n+m| < ε for every n ∈ Zd r (Q(j) + B(2r)).

The point

y =
t∑

j=1

∑
m∈Γ

αm(y(j))

satisfies (5.2) with ε replaced by 2ε, and αmy = y for every m ∈ Γ .

Lemma 5.5. Let f ∈ Rd be an irreducible polynomial such that αRd/fRd
is expan-

sive, let k, n ≥ 1, let R = Rd/f
kRd, and let X ⊂ R̂n ⊂ (Tn)Zd

be a closed, shift-
invariant subgroup. If the restriction to X of the shift-action σ of Zd on (Tn)Zd

has
completely positive entropy, then it has both homoclinic and strong specification.
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Proof. We write N for the Rd-module X⊥, considered as an R-module, and apply
Lemmas 4.9 and 4.11 to conclude that N ′′ = N , that ∆σ(X) is dense in X , and
that every homoclinic point y ∈ ∆σ(X) ⊂ R̂n ⊂ (TZd

)n ∼= (Tn)Zd

is of the form

y = (h1(σ)xM, . . . , hn(σ)xM)

for some (h1, . . . , hn) ∈ N ′ ⊂ Rn (the notation is explained in the proof of Lemma
4.9).

For each h = (h1, . . . , hn) ∈ N ′ and y ∈ XR the element ζh(y) = (h1(σ)y, . . . ,
hn(σ)y) is in X since it is annihilated by every element in N = X⊥. Choose a
finite set {h(i) : 1 ≤ i ≤ s} of generators for N ′ and consider the map ζ : Xs

R −→ X
defined by ζ(y1, . . . , ys) =

∑s
i=1 ζh(i)(yi). Let Y = ζ(Xs

R). Then clearly Y ⊥ ⊃
N ′′ = N . Conversely, if b = (b1, . . . , bn) ∈ Y ⊥, then b annihilates each ζh(i)(xM), so
b ∈ X⊥ = N since ∆σ(X) is dense in X . Hence Y = X and ζ is surjective.

Lemma 5.4 shows that αR satisfies both homoclinic and strong specification.
Since each property is preserved under finite direct products and quotients, we
conclude that σX also satisfies homoclinic and strong specification.

Proof of Theorem 5.2. (1)⇒ (2), (3), and (4): Let α be an expansive algebraic Zd-
action onX with completely positive entropy, and letM = X̂ be the Noetherian Rd-
module defined in (2.1)–(2.2). We choose an Rd-module N = N (1)⊕· · ·⊕N (m) ⊃M
according to Lemma 2.1(5) and put Y = XN and β = αN . Fix j ∈ {1, . . . ,m},
denote by fj a generator of the principal prime ideal pj associated with M , and
view the module N (j) as a module over the ring R = Rd/f

sj

j Rd (cf. the proof of
Theorem 4.2). We continue as in the proof of Theorem 4.2, write N (j) = Rsj/K for
some R-submodule K ⊂ Rsj , and embed XN(j) in XRsj ⊂ (Tsj )Zd

as a closed, shift-
invariant subgroup. As αN(j) has completely positive entropy, it has homoclinic and
strong specification by Lemma 5.5, and by varying j ∈ {1, . . . ,m} we obtain that
β = αN has homoclinic and strong specification.

If τ : Y −→ X is the surjective group homomorphism dual to the inclusion M ⊂
N , then τ · βn = αn · τ , and hence α has both homoclinic and strong specification
since each property is preserved under quotients.

(3) ⇒ (2) ⇒ (1): Trivially (3) ⇒ (2). Suppose that α is expansive and has
weak specification. Let Z = ∆α(X). Then by Remark 4.12, the restriction αX/Z
of α to X/Z has zero entropy. Now weak specification implies positive entropy
and is preserved under quotients. Hence if X/Z is nontrivial, then we would have
h(αX/Z ) > 0, a contradiction. Thus Z = X , and so α has completely positive
entropy by Theorem 4.2.

(4) ⇒ (1): By Proposition 2.2, if α has homoclinic specification, then ∆α(X) is
dense in X , hence α has completely positive entropy by Theorem 4.2.

Remark 5.6. Definition 5.1 uses rectangles Qj in Zd in defining specification. How-
ever, our proofs made no essential use of the particular form of these sets, only
their separation described in (5.1). This leads to a very strong form of specifica-
tion. Namely, every expansive algebraic Zd-action with completely positive entropy
satisfies parts (1), (2), and (3) of Definition 5.1 where the sets Qj can be arbitrary
subsets of Zd, finite or infinite.

One simple consequence is the following. Let α be an expansive algebraic Zd-
action on (X, ρ) and ε > 0. Then there is a p(ε) > 0 such that for every r > 0 and
x, y ∈ X , there is a z ∈ X such that ρ(αnz, αnx) < ε if ‖n‖ < r and ρ(αnz, αny) < ε
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if ‖n‖ > r + p(ε). This property does not appear to be a direct consequence of
Theorem 5.2.

Remark 5.7. Theorem 5.2 can fail if the expansiveness hypothesis is omitted. For
example, let φ be an ergodic automorphism of Tk induced by A ∈ GL(k,Z). Then
φ has completely positive entropy. On the other hand, the argument of Example
3.4 shows that ∆φ(Tk) = {0}, so that φ does not have homoclinic specification.
Furthermore, φ has strong specification if and only if A has no eigenvalues on the
unit circle, and φ has weak specification if and only if all eigenvalues of A on the
unit circle are semisimple (see [7]).

In Examples 3.3, 4.6, and 4.7 the fundamental homoclinic point has coordinates
which are algebraic numbers (mod 1). It is not difficult to see that expansive
algebraic Z-actions which are realized as subshifts of (Tn)Z as in §2 always have
coordinates whose components are algebraic. However, the following example shows
that this may fail when d ≥ 2.

Example 5.8. (An expansive Z2-action having transcendental homoclinic points.)
Let f(u1, u2) = 4−u1−u2−u−1

1 u−1
2 . Then αR2/fR2 is expansive on XR2/fR2 . The

Fourier transform F of f̃ is F (s, t) = 4 − e2πis − e2πit − e−2πi(s+t). Expansion by
geometric series shows that

wM
0 =

(
1
F

)
(̂0) =

1
4

∞∑
n=0

(3n)!
(n!)3

4−3n

=
1
4

∞∑
n=0

(
1
3

)
n

(
2
3

)
n

(1)n n!

(
3
4

)n

=
1
4
H

(
1
3
,
2
3
, 1;

3
4

)
,

where (a)n = a(a + 1) . . . (a + n − 1) and H(a, b, c; z) is the hypergeometric func-
tion. This value of the hypergeometric function is known to be transcendental
[19]. Thus the 0th coordinate of the fundamental homoclinic point for αR2/fR2 is
transcendental.

6. Splitting skew products

Let α be an algebraic Zd-action on X and suppose that Y ⊂ X is an α-invariant
closed subgroup. By taking a Borel cross-section to the quotient map X → X/Y
we can represent α as a twisted skew product with base action αX/Y , and this
approach is useful in deriving dynamical properties of α from those of αX/Y and
αY . More generally, let (Ω, µ) be a probability measure space and β a measure-
preserving Zd-action on Ω. A measurable function ψ : Ω × Zd −→ X is a twisted
cocycle (for α) provided that

ψ(ω,m + n) = αmψ(ω,n) + ψ(βnω,m)(6.1)

for all ω ∈ Ω and m,n ∈ Zd. The twisted skew product Zd-action β×ψ α on Ω×X
is given by

(β ×ψ α)n(ω, x) = (βnω, αnx+ ψ(ω,n)),

where (6.1) shows this defines a Zd-action. The direct product action β × α corre-
sponds to ψ ≡ 0X . Clearly β ×ψ α preserves the product measure µ× λX .

For a single automorphism obeying weak specification it was shown in [6] that
every twisted skew product is measurably isomorphic to the direct product of the
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base transformation and the automorphism via a map that translates fibers. One
use of this result is a simpler proof of the Bernoullicity of ergodic toral automor-
phisms that avoids the delicate Diophantine arguments of earlier proofs [6, Thm.
6.3]. Here we extend this splitting result to algebraic Zd-actions obeying weak
specification.

Let θ : Ω → X be measurable and define Θ: Ω × X −→ Ω × X by Θ(ω, x) =
(ω, x + θ(ω)). For n ∈ Zd the conjugacy relation Θ · (β ×ψ α)n = (β × α)n · Θ is
equivalent to

ψ(ω,n) = αnθ(ω)− θ(βnω).(6.2)

Hence given α, β, and ψ, we want to solve (6.2) for θ. For technical simplicity we
assume β is aperiodic, i.e., βnω 6= ω for all ω ∈ Ω and n 6= 0.

Theorem 6.1. Let α be an algebraic Zd-action on X satisfying weak specification,
and let β be an aperiodic measure-preserving Zd-action on (Ω, µ). For every twisted
cocycle ψ : Ω×Z −→ X there is a measurable function θ : Ω −→ X satisfying (6.2)
for all ω ∈ Ω and n ∈ Zd. Hence β×ψ α is measurably isomorphic to β×α via the
map (ω, x) 7→ (ω, x+ θ(x)).

Proof. For S ⊂ Zd and F ⊂ Ω it is convenient to let SF denote
⋃

n∈S β
nF . Fix a

decreasing sequence (εk) of positive numbers with
∑∞

k=1 εk < ∞. Let p(ε) denote
the separation function coming from weak specification for α.

By using Rohlin’s lemma for aperiodic Zd-actions [5], we can find for each k ≥ 1
a measurable set Fk and a cube Sk = {0, 1, . . . , qk}d ⊂ Zd satisfying the following
properties.

(a) The sets βnFk are disjoint for n ∈ Sk and their union Ek = SkFk has µ(Ek) >
1− εk.

(b) E1 ⊂ E2 ⊂ E3 ⊂ · · · .
(c) Almost every ω ∈ Ω has the property that for every n ≥ 1 there is a k ≥ 1

such that {−n, . . . , n}d ω ⊂ Ek.
(d) By (c), if ω ∈ Fk+1, then (Sk+1ω) ∩ Ek =

⋃r
j=1(Sk + nj)ω, and we require

that the cubes Sk + n1, . . . , Sk + nr be separated by at least p(εk).

We inductively construct measurable θk : Ek −→X such that θk+1 is εk-uniformly
close to θk on Ek and such that θk satisfies ψ(ω,n) = αnθk(ω) − θ(βnω) for all
ω ∈ Fk and n ∈ Sk. It follows from property (a) that θ = limk→∞ θk is defined
almost everywhere and is measurable, and from (c) that θ satisfies (6.2) for a set
of full measure in Ω and all n ∈ Zd.

Start by defining θ1 measurably but otherwise arbitrarily on F1, and extend θ1
to E1 by θ1(βnω) = αnθ1(ω)−ψ(ω,n) for ω ∈ F1 and n ∈ S1. Assume inductively
that θk is defined on Ek such that θk(βnω) = αnθk(ω) − ψ(ω,n) for ω ∈ Fk and
n ∈ Sk. Let θ̃k+1 be an arbitrary measurable function on Fk+1, and extend it to
Ek+1 as before. Fix ω0 ∈ Fk+1. Then

(Sk+1ω0) ∩ Ek =
r⋃
j=1

(Sk + nj)ω0.
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If ωj denotes βnjω0, then for all m ∈ Sk we have that

θ̃k+1(βmωj)− θk(βmωj)

= αmθ̃k+1(ωj)− ψ(ωj ,m)− [αmθk(ωj)− ψ(ωj ,m)]

= αm[θ̃k+1(ωj)− θk(ωj)].
Let xj = θ̃k+1(ωj) − θk(ωj). Since the cubes Sk + n1, . . . , Sk + nr are separated
by at least p(εk), weak specification for α shows that there is an x ∈ X such
that ρ(αm+njx, αmxj) < εk for m ∈ Sk and 1 ≤ j ≤ r. By defining θk+1(ω0) =
θ̃k+1(ω0)−x and extending to Sk+1ω0 as before, we obtain that θk+1 is εk-uniformly
close to θk on (Sk+1ω0) ∩ Ek.

A word is needed about measurability of θk+1 in this construction. For each
ω0 ∈ Fk+1 we adjust θ̃k+1(ω0) by an amount x determined from weak specification.
By using ≤ inequalities in the specification definition, we obtain for each ω0 ∈
Fk+1 a nonempty compact set K(ω0) of allowable adjustments, where K(ω0) varies
measurably with ω0 by its definition. Standard selection theorems then show that
there is a measurable κ : Fk+1 −→ X such that κ(ω0) ∈ K(ω0). Then θk+1 =
θ̃k+1 − κ is measurable.

Example 6.2. (Two expansive algebraic Zd-actions that are measurably but not
algebraically or topologically isomorphic.) Let f be a nonunit polynomial in R = Rd
such that VC(f)∩Sd 6= ∅. The natural quotient map R/f2R −→ R/fR dualizes to
show that Y = XR/fR is an αR/f2R-invariant subgroup of X = XR/f2R. As pointed
out at the start of this section, we can therefore regard αR/f2R as a twisted skew
product β×ψα, where the base action is β = αfR/f2R

∼= αR/fR and the fiber action
is α = αR/fR. Since α is expansive and has completely positive entropy, it satisfies
weak specification by Theorem 5.2. Hence by Theorem 6.1 we see that αR/f2R

is measurably isomorphic to αR/fR × αR/fR. The existence of an isomorphism
between these actions (although not of the precise form given by Theorem 6.1) also
follows from the deeper facts that they are both Bernoulli Zd-actions [15] with the
same entropy [8].

However, there is no group isomorphism φ : XR/f2R −→ XR/fR ×XR/fR inter-
twining αR/f2R with αR/fR × αR/fR. For φ̂ would give an R-module isomorphism
of R/f2R with (R/fR) × (R/fR), which is clearly impossible since f annihilates
the second R-module but not the first. Since XR/fR is connected, Theorem 5.9 of
[15] shows that these actions are not even topologically conjugate.

7. Homoclinic groups of nonexpansive algebraic Zd-actions

The purpose of this section is to show by a series of nonexpansive examples that
most of our results for expansive actions do not extend to arbitrary actions.

We first describe a basic reason why nonexpansive actions can have more com-
plicated homoclinic groups. Let f ∈ Rd and consider the Zd-action α = αRd/fRd

.
As in §2 we identify X = XRd/fRd

as a shift-invariant subgroup of TZd

. Let
η : `∞(Zd,R) −→ TZd

be defined as before by reducing each coordinate (mod 1).
Recall the definition of f̃ ∈ c0(Zd,R) from the proof of Lemma 4.5. Say that
w ∈ c0(Zd,R) is a linear homoclinic point for α if f̃ ∗ w = 0. If w 6= 0 is such
a point, then for every t ∈ R we see that η(tw) ∈ ∆α(X), and hence ∆α(X) is
uncountable. But Lemma 3.2 shows that if α is expansive this cannot happen. We
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have repeatedly used this basic property that expansive actions never have nonzero
linear homoclinic points in previous sections.

In contrast, for nonexpansive examples the set VC(f) ∩ Sd may be sufficiently
large to support measures whose Fourier transform decays to 0 at infinity, and this
provides a rich supply of linear homoclinic points. Examples 7.3 and 7.5 employ
this idea.

Example 7.1. (Completely positive entropy and trivial homoclinic group.) Let
g(u) ∈ Z[u] be irreducible and monic, have constant term ±1, and have some but
not all of its roots on S. Set VC(g) ∩ S = {ξ1, . . . , ξr}. If we define f ∈ R2 by
f(u1, u2) = g(u1), then VC(f) =

⋃ r
j=1{ξj} × S. The Z2-action α = αR2/fR2 on

X = XR2/fR2 has completely positive entropy by Lemma 2.1(4).
To prove that ∆α(X) = {0X}, we first realize α and X in the following way. Let

k = deg g, let A be the companion matrix of g, and let φ be the automorphism of
Tk induced by A. Then X ∼= (Tk)Z, and α(1,0) acts on X by applying φ to each
coordinate, while α(0,1) acts on X as the shift. Then every x = (xn) ∈ ∆α(X) must
have each xn ∈ ∆φ(Tk). But Example 3.4 shows that ∆φ(Tk) = {0Tk}. Hence
∆α(X) = {0X}.

Example 7.2. (Completely positive entropy and countably infinite homoclinic
group.) Let f(u1, u2) = 2 − u1 − u2 ∈ R2. Then VC(f) ∩ S2 = {(1, 1)}, and so
α = αR2/fR2 is not expansive on X = XRd/fR2 . The Fourier transform F of f̃ is
given by F (s, t) = 2− e2πis − e2πit, and although 1/F is unbounded on T2 one can
easily verify that 1/F ∈ L1(T2, λT2). The Fourier series of 1/F is computed exactly
as in Example 4.6, resulting in the point wM ∈ `∞(Z2,R) defined by

wM
(−m,−n) =


1

2m+n+1

(
m+ n

n

)
if m ≥ 0 and n ≥ 0,

0 otherwise.

The Riemann-Lebesgue Lemma shows that wM ∈ c0(Z2,R), which can also be de-
duced from the explicit formula above since the nonzero terms are binomial prob-
abilities. Hence xM = η(wM) ∈ ∆α(X), and the same arguments as in the proof of
Lemma 4.5 show that the map R2/fR2 −→ ∆α(X) given by g + fR2 7→ g(σ)xM is
an isomorphism.

Are there other points in ∆α(X)? Suppose that x ∈ ∆α(X) and choose v ∈
`∞(Z2,R) with ‖v‖∞ ≤ 1/2 and η(v) = x. Then f̃ ∗ v ∈ `∞(Z2,Z) ∩ c0(Z2,R),
so that there exists g ∈ R2 with f̃ ∗ v = g̃. Since g̃ = g̃ ∗ f̃ ∗ wM, we see that
w = v − g̃ ∗ wM ∈ c0(Z2,R) and f̃ ∗ w = 0. If α were expansive, this would be
enough to conclude that w = 0 as above, and hence that x = η(v) = g(σ)xM, which
would prove that there are no additional homoclinic points. This line of reasoning
is correct, but requires a different argument to show that if w ∈ c0(Z2,R) and
f̃ ∗ w = 0, then w = 0.

Start by adjusting w by a translation so that |w(0,0)| = supn∈Z2 |wn|. Since
w ∈ c0(Z2,R), there is an m > 0 such that |w(k,m−k)| ≤ 1

2 |w(0,0)| for all 0 ≤ k ≤ m.
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Since f̃ ∗ w we see that

w(0,0) =
1
2
w(1,0) +

1
2
w(0,1) =

1
4
w(2,0) +

1
2
w(1,1) +

1
4
w(0,2)

= · · · =
m∑
k=0

1
2m

(
m

k

)
w(k,m−k).

Hence

|w(0,0)| ≤
m∑
k=0

1
2m

(
m

k

)
|w(k,m−k)| ≤ 1

2
|w(0,0)|.

This proves that w(0,0) = 0, and so w = 0. We have therefore shown that all
homoclinic points have the form g(σ)xM, so that ∆α(X) is countable. The proof of
Lemma 4.5 applies to establish that ∆α(X) is dense in X .

There is a simple idea behind the proof in the previous paragraph. The condition
f̃ ∗ w = 0 means that w is “harmonic” in the sense that

w(m,n) =
1
2
[w(m+1,n) + w(m,n+1)].

Now harmonic points must satisfy an analogue of the Maximum Principle, namely
that they attain their maximum value over a “region” on its “boundary”. But no
point in c0(Z2,R) can satisfy this principle unless it is zero. The arguments in this
example therefore apply to all f ∈ Rd having exactly one positive coefficient such
that

∑
n∈Zd cf (n) = 0.

Observe that here the diagonal coordinates of w are

w(−n,−n) =
1

22n+1

(
2n
n

)
∼ 1

2
√
πn

(see [2, p. 75]), which decay slowly as n→∞. Thus the homoclinic point xM does
not exhibit the exponential decay that by Lemma 4.3 must occur for homoclinic
points of expansive actions. In particular, homoclinic points with slow decay seem
useless in determining whether an action obeys specification. For example, we
do not know whether the action of this example satisfies any of the specifications
defined in §5.

Example 7.3. (Completely positive entropy and uncountable homoclinic group.)
For this example let f(u1, u2) = 3 − u1 − u−1

1 − u2 − u−1
2 . Then the Fourier

transform F of f̃ is given by F (s, t) = 3 − 2 cos 2πs − 2 cos 2πt. Let K = {(s, t) ∈
T2 : F (s, t) = 0}. This is a smooth real-analytic curve in T2, viz.

t = ± 1
2π

cos−1

(
3
2
− cos 2πs

)
, −1

6
≤ s ≤ 1

6
.

Then VC(f)∩S2 = {(e2πis, e2πit) : (s, t) ∈ K}, so that α = αR2/fR2 is not expansive
on X = XR2/fR2 . In contrast to the previous example, here 1/F /∈ L1(T2, λT2) so
that the Fourier methods of Lemma 4.5 fail. The existence of linear homoclinic
points accounts for the uncountability of ∆α(X).

By identifying T2 with the subset [−1/2, 1/2)2 ⊂ R2, we may consider K as a
smooth curve in R2. Let νK denote the measure on K induced by arc length, and
let ψ ∈ C∞(K) be any smooth nonzero function on K. Define a measure µ on K
by dµ = ψ dνK . Since µ is supported on K and F vanishes there, we see that

(f̃ ∗ µ̂)̂= (f̃)̂· µ = F · µ = 0.
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Thus µ̂ ∈ `∞(Z2,C) satisfies f̃ ∗ µ̂ = 0. Now K has curvature bounded away from
zero, so it follows from [18, Thm. 1 of §VIII.3.1] that there is a constant C > 0
such that

|µ̂(n)| ≤ C‖n‖−1/2 for all n ∈ Z2.(7.1)

Hence v = Re µ̂, w = Im µ̂ ∈ `∞(Z2,R) are linear homoclinic points that are
not both zero, say v 6= 0. Then η(tv) ∈ ∆α(X) for all t ∈ R, so that ∆α(X)
is uncountable. Indeed, distinct ψ ∈ C∞(K) yield distinct µ̂, so that ∆α(X)
encompasses the complexity of C∞(K).

What is essential for the decay estimate (7.1) is that the curve K not have
infinite-order contact with any line, which is guaranteed here by the curvature of
K being bounded away from zero. This curvature is missing in Example 7.1, and
explains why that example has no linear homoclinic points.

This example was suggested to us by Hart Smith as a finite-difference analogue
of the partial differential operator ∂2/∂x2 + ∂2/∂y2 − 1. This operator has nonzero
solutions that do not obey the Maximum Principle and which decay to 0 at infinity,
precisely the behavior needed to find linear homoclinic points in the finite-difference
setting.

Example 7.4. (Zero entropy and trivial homoclinic group.) Choose g(u), h(u) ∈
Z[u] to be monic and irreducible, have constant term ±1, and have some but not
all of their roots on S. Set VC(g) ∩ S = {ξ1, . . . , ξr} and VC(h) = {η1, . . . , ηs}. We
may assume that ξmi η

n
j 6= 1 for 1 ≤ i ≤ r, 1 ≤ j ≤ s, and (m,n) 6= (0, 0). Let

k = deg g, ` = deg h, and A, B be the companion matrices of g, h, respectively.
Denote the ` × ` identity matrix by I`. Define φ to be the automorphism of Tk`
induced by A⊗ I` and ψ to be that induced by Ik ⊗B.

If a is the ideal in R2 generated by g(u1) and h(u2), then X = XR2/a
∼= Tk` and

the Z2-action α = αR2/a is generated by φ and ψ. Our assumptions on the ξi and
ηj show that α is mixing. Now h(α) = 0 since smooth Z2-actions have topological
entropy zero. Note that φ is isomorphic to the direct product of ` copies of an
ergodic nonhyperbolic toral automorphism, and so ∆φ(X) = {0X} by Example
3.4. Hence ∆α(X) ⊂ ∆φ(X) is also trivial.

Example 7.5. (Zero entropy and uncountable homoclinic group.) Define f, g ∈ R3

by

f(u1, u2, u3) = 5− u1 − u−1
1 − u2 − u−1

2 − u3 − u−1
3 ,

g(u1, u2, u3) = 3− u1 − u−1
1 − u1u3 − u−1

1 u−1
3 ,

and put a = 〈f, g〉. Since f and g have no common factor in R3, it follows that
every prime ideal associated to R3/a is nonprincipal, and hence h(αR3/a) = 0 by
Lemma 2.1(3).

In order to describe VC(a), let τ : T3 −→ S3 be the isomorphism given by

τ(s, t, u) = (e2πis, e2πit, e2πiu).

Then

V1 = τ−1
[
VC(f) ∩ S3

]
= { (s, t, u) ∈ T3 : 5− 2 cos 2πs− 2 cos 2πt− 2 cos 2πu = 0 }
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and

V2 = τ−1
[
VC(g) ∩ S3

]
= { (s, t, u) ∈ T3 : 3− 2 cos 2πs− 2 cos 2π(s+ u) = 0 }.

Here V1 is a 2-dimensional spheroid in T3 while V2 is a skewed cylinder piercing
through V1. Their intersection V = V1∩V2 is the disjoint union of two real-analytic
curves K1 and K2. We give a parametric representation of these curves in terms of
s as follows.

First observe that (s, t, u) ∈ V2 if and only if

u =
1
2π

cos−1

(
3
2
− cos 2πs

)
− s,(7.2)

which determines u in terms of s on V . Since f − g = 0 on V , we obtain that

2− 2 cos 2πt− 2 cos 2πu+ 2 cos 2π(s+ u) = 0.

Cancelling the factor 2 and noting that cos 2π(s + u) = 3
2 − cos 2πs on V2, we see

that on V

cos 2πt =
5
2
− cos 2πu− cos 2πs.

Hence by (7.2)

t =
1
2π

cos−1

[
5
2
− cos 2πs− cos

{
cos−1

(
3
2
− cos 2πs

)
− 2πs

}]
.(7.3)

Taking into account the appropriate branches of cos−1, the equations (7.2) and
(7.3) describe the two curves K1 and K2 in T3.

Identify T3 with [−1/2, 1/2)3 ⊂ R3, and so consider V = K1 ∪K2 as a subset
of R3. It can be verified from our parametric representation that the curves Ki are
real-analytic and neither is contained in a hyperplane. More specifically, each Ki

has contact of order at most 2 with each 2-dimensional hyperplane, so that, in the
terminology of [18], V = K1 ∪K2 has type 2. Let νV be the measure on V induced
by arc length, ψ ∈ C∞(V ), and µ be the measure defined by dµ = ψ dνV . By [18,
Thm. 2 of §VIII.3.2], it follows that there is a constant C > 0 such that

|µ̂(n)| ≤ C‖n‖−1/2 for all n ∈ Z3.

As in Example 7.3, this provides a linear homoclinic point in c0(Z3,R), and so by
scaling gives an uncountable number of homoclinic points for α.
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