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HYPERFINITENESS AND THE HALMOS-ROHLIN THEOREM 

FOR NONSINGULAR ABELIAN ACTIONS' 

J. FELDMAN AND D. A. LIND 

ABSTRACT. THEOREM 1. Let the countable abelian group G act nonsingularly 

and aperiodically on Lebesgue space (X, u). Then for each finite subset A c G 

and e > 0 3 finite B c G and F c X with {bF: b E B) disjoint and 

u[(FnaEAB - a)F] > 1 - e. 

THEOREM 2. Every nonsingular action of a countable abelian group on a 

Lebesgue space is hyperfinite. 

1. Introduction. The principal results here are a Halmos-Rohlin theorem 

for nonsingular actions of a countable abelian group on a Lebesgue measure 

space, and a proof of their hyperfiniteness. The latter fact has relevance for 

the group-measure space construction of von Neumann algebras. This con- 

struction produces algebras of type III precisely when there is no equivalent 

measure preserved by the action (see [9, Chapter 4.2]). 

These results have already been proved for measure-preserving actions. 

Katznelson and Weiss [4] and Conze [1] proved a Halmos-Rohlin theorem for 

measure-preserving actions of Zd, and Krieger [5] extended this to countable 

abelian groups. Hyperfiniteness was shown in the measure-preserving case by 

Dye in the second of his pioneering papers [2] and [3]. However, it seems 

worthwhile to give a simpler proof of hyperfiniteness even in this case. 

Finally, Versik [10] has announced a proof of the hyperfiniteness of nonsingu- 

lar countable abelian actions. However, the only proof of his of which we are 

aware [11] has serious gaps. 

After this paper was completed, we learned from A. Connes that he and W. 

Krieger have also proved Theorem 2, apparently by somewhat different 

methods. 

2. The Halmos-Rohlin theorem. All transformations act on a fixed Le- 

besgue measure space (X, jt) (see [8] for the properties of such spaces). An 

invertible measurable transformation of X is called nonsingular if both it and 

its inverse map p-null sets to p-null sets. The group of all such transforma- 

tions is denoted by 6 ( y). 

Let G be a countable abelian group. A nonsingular action of G on (X, y) is a 

homomorphism T: G A-> 6 (yt). We abbreviate T(g)(x) by gx, T(g)(F) by 
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gF for subsets F of X, etc. We say G acts aperiodically on (X, ,t) if the only 

element of G which has a fixed point is the identity of G. If B c G and 

F c X, then BF denotes n {bF: b E B). A subset F of X is called a B set if 

{bF: b E B) is a disjoint collection. If A and B are subsets of G, then n AB 

denotes n { B - a: a E A). We are now prepared to state the result of this 

section. 

THEOREM 1. Let the countable abelian group G act nonsingularly and aperiod- 

ically on the Lebesgue space (X, ,u). Then for each finite subset A of G and each 

E > 0, there exists a finite subset B of G and a measurable B set F with 

t[(nAB)F] > 1 - 

PROOF. The proof builds on some ideas in [7]. For measure-preserving 

actions this proof is actually quite simple. Most of our proof is concerned 

with using averaging arguments to control the size of sets which are easily 

shown to be small for measure-preserving actions. 

First, suppose that the theorem is true for actions of the d-dimensional 

integers Zd. If G is a countable abelian group acting on X, and A is a finite 

subset of G, we can assume without loss that A generates G. Hence for some 

integer d and finite group H, we have G isomorphic to Zd ( H. Let D be the 

partition of X into orbits of H, and q: X -> X/D be the quotient map. Then D 

is a measurable partition in the sense of Rohlin [8], and X/D is a Lebesgue 

space under the measure A,(E) = [t(q- E). The aperiodic action of Zd on X 

induces one on X/D. Let Ao be the projection of A into Zd. By our initial 

assumption, for every F > 0 there is a Bo C Zd and Fo c X/I' with 

A[(nAOBO)FO] > 1 - e. Let F c X be a measurable cross section of q 
restricted to q - 1(FO), and B = Bo E) H. Then F is a B set, and since 

nAB = (nAOBO) ( H, we have 

[( A J [ L AO)F] - 
Thus we may assume that G = Zd. The basic strategy is the following. We 

begin by showing that for arbitrarily large cubes Q in Zd there is a Q set F 

such that for every t in a cube one fourth the size of Q, the set (Q + t)F fills 

out at least a fixed proportion of F. The same argument is applied to fill out a 

fixed proportion of the remainder of X with a smaller cube, and these two 

constructions are combined to fill out a larger proportion of the entire space 

using the smaller cube. This combination involves an averaging argument 

which uses some flexibility in the original choice of Q. Repeating this 

procedure eventually fills out as much of X as desired. 

Let Qp be the cube {0, 1, . . . , P - I}d, and 

Rp= {-PI -P + 1, . .. I,P - 1} I 

so that Rp is made up of 2d translates of Qp. Let BN (Qp) be a barrier of 
thickness N surrounding Qp, namely 

BN (Qp ) = { t E Zd: -N < tj < P + N\ Qp. 

If L divides P, let SL(Qp) be Qp "shrunk" symmetrically so that a proportion 
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I/L is removed from its surface, namely SL(QP) = {t E Zd: P/L < tj 
< p- P/L}. 

Say an integer L works for the real number 8 if there is some M such that 

for all multiples P of LM there exists a Qp set F with 4[SL(Qp)F] > 3. Let a 

be the supremum of the numbers f8 for which some integer works. We will 

show that a = 1. This will prove the theorem, since for a finite subset A of G, 

we have SL(Qp) C nA QP for sufficiently large P. 

We first show that 4 works for 4-d, so that a > 0. Aperiodicity of the 

action guarantees that for every integer P and every subset E of positive 

measure, there is a Qp set of positive measure contained in E. Zorn's Lemma 

provides a maximal Qp set F; that is, a measurable subset F such that if 

F' D F and F' is also a Qp set, then tt(F' \ F) = 0. We claim that [(RpF) 
= 1. For otherwise, X \ RpF would contain a Qp set of positive measure, and 

this could clearly be combined with F to produce a larger Qp set. Now 

assume that P is divisible by 4. Then Rp is covered by 4d translates of 
QP12 

and so there must be at least one such translate, say QP/2 + t, for which 

/4(QP/2 + t)F] > 4-d. Choose t' so that QP/2 + t -t' = S4(Qp). Set F1 
= t'F. Then F1 is a Qp set and 1[S4(Qp)F1] = /4(QP/2 + t)F] > 4 

Now suppose that 8 < a. Let (, r, be positive numbers. We will show that 

,8 - t + 4-d(I -_ 8 - q) is also less than a. Hence f8 + 4-d(l - 8) < a. 

But the only number a in (0, 1] which can have this property for all f8 < a is 

a = 1. 

The proof of our assertion is based on the following two statements. 

(i) If -q > 0, then for every sufficiently large even integer M, integer L, 

multiple P = NLM of LM, and Qp set F, for over 9/10 of the elements t in 

QP/L we have 

[t[B2N(Qp)(tF)] <7 

(ii) If t > 0, then for every sufficiently large integer L, integer M, multiple 

P = NLM of LM by a multiple N of L, and Qp set F, for over 9/10 of the t 

in QP/L we have 

pt[SL(QN)(NQP/N )(tF)] > [Qp (tF)] - 

We will prove statement (i). The proof of (ii) is similar, and we omit it. 

Divide B2N ( Qp) into lower dimensional "slabs" as follows. For each 

nonempty subset A of { 1, 2, . . . , d} and each a: A - 1, 11, let 

BA= {t: 0< tj < Pifj 0 A, -2N < tj <Oifu(j)= -1, 

P < tj <P + 2Nifa(j) = 1). 

Then B2N(QP) is the disjoint union of the BX. The number of these slabs is 

easily seen to be 3d - 1. Let 

QA = {2Nt: tj = 0ifj 0 A,0 < tj < M/2ifjE A). 

Since BX + QA is contained in a translate of Qp, and since the collection 

{B, + t: t E QA) is disjoint, it follows that BXF is a QA set. 

Let the cardinality of a set A be denoted by IA 1. Then QP/L consists of a 

disjoint union of IQP/L| / I QAI translates of QA. Thus 
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JQP/LI 

E [EBO(tf)] < I P/ 
tE QP/L IQA 

Since IQAI > M/2, the right-hand side is bounded by 21QP/LI/M. Summing 

over A and a shows that 

2(3" d_- IQI 
E 1i4B2N(QP)(tF)] M 

t E QP/L 

and hence that 

1 f 20(3d - 1) 

IQPILI |t 
E= 

QP/L tu[ B2N (Qp )(tF)] > M < 10 

If M > 20(3d - 1)/q1, the desired inequality in (i) holds. 

We now complete the proof of the theorem using (i) and (ii). Suppose 

,3 < a, and choose L1 to work for /3. This means that there exists an M1 such 

that for any multiple P of L1M, there is a Qp set F with 4[SL,(Qp)FI > /3. 
Let M be an even multiple of M1 and so large that (i) holds. Let L be a 

multiple of L1 and so large that (ii) holds. Let P be a multiple of LM by a 

multiple N of 2L. Hence for the Qp set F with I[SL,(Qp)F] > /, there exists 

some t in QP/L so that the inequalities in both (i) and (ii) hold. Let F1 = tF, 

and let 

E = X \ (Qp U B2N (QP))FI. 

Choose a maximal QN set F2 in E. Then, arguing as before, E c RNF2 except 

for a null set. Now RN is the union of 4d translates of QN/2, so for one of 

these, say QN/2 + u, we must have 

K (QN12 + u)F2} n E] > 4-d,L(E). 

Choose u' so that QN/2 + u - u' = S4(QN), and put F3 = u'F2. Finally, put 

F4 = (NQP/N)FI. We will check that F' = F3 u F4 is a QN set for which 

,u[SL(QN)F'] > /3 - t + 4d(l - /3 - q). 

This will show that L works for /3 - P + 4-d(l - /3 - q), and complete the 

proof. 

The set F2 was chosen to be a QN set, so the same holds for F3. Since F1 is a 

Qp set, it follows that F4 is a QN set, and 

QNF4 = (QN + NQP/N )F1 = QpF1. 

Now u' E RN, so that 

QNF3 = QN (u'F2) c R2NE. 

Since R2NE is disjoint from QpF1, we have that F3 u F4 is also a QN set. 

We estimate the measures of the disjoint sets SL(QN)F3 and SL(QN)F4 

separately. By (i) we have 

A[SL(QW)F31 > t[S4(QN)F3] = A[(QN/2 + u)F2] > 4-dA(E) 

> 4-d(l 
- 

A[jQp(tF)] -[ B2N(Qp)(tF)]) 

> 4-d(l - 
A[Qp(tF)] 

- 
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Also, using (ii) we have 

[SL(QN)F4] = pSL(QN)(NQP/N )(tF)] > [Qp (tF)] - 

Thus 

[ SL (QN )F'] > 4Qp (tF)] - ( + 4 -(I - 4[ Qp (tF)] - 

Since t E QPIL, we have Qp + t D SL(Qp), so that 

[[Qp(tF)] > [tSL(QP)F] > [t[SL1(Qp)F] > /8. 

Applying this to the right side of the previous inequality gives the desired 

result. 

3. Hyperfiniteness. A nonsingular action of a countable group G on X is 

called hyperfinite if for each finite subset A of G and each E > 0, there exists 

some finite group K c 'L (,u) such that Kx c Gx for almost every x, and 

such that for each a E A there is some k E K with [({x: ax 7# kx}) < E. 

This definition (in the measure-preserving case) is due to Dye [2]. Two 

equivalent definitions are the following: 

(1) there is some nonsingular action of Z on X such that Zx = Gx for 

almost every x; 

(2) there exist finite groups G1 c G2 c of nonsingular transforma- 

tions of X with U GQx = Gx for almost every x. 

The proof of the equivalence of these with the original definition is in [2] 

and [5]. 

The first lemma describes the aperiodic decomposition of X. 

LEMMA 1. Let the countable abelian group G act nonsingularly on X. If H is a 

subgroup of G, let XH = {x: gx = x if and only if g E H). Then X is the 

disjoint union of the XH, each XH is measurable and invariant under G, and 

G/H acts aperiodically on XH. 

PROOF. Clear. 

LEMMA 2. A nonsingular action of G is hyperfinite if for each finite subset A of 

G and each F > 0, there exists a finite subset B of G and a B set F in X such 

that p4[(nAB)F] > 1 -E. 

PROOF. Suppose that A is a finite subset of G which contains the identity, 

and let e > 0. Choose B and F to satisfy the hypothesis. We construct the 

required finite group K from B and F as follows. For each permutation ST of 

B, let T, E 6Y ( ) be defined by 

Tx =fJ(b)x if x E bF (b E B), 

x if x E X \ BF. 

The collection of such T, forms a finite group K in )L, (pt). Clearly Kx c Gx 

for every x. If a E A, the map b i- b + a from nA B to B extends to a 

permutation ga of B. Then Ta E K, and 

t( x: ax #& Ta x}) > 0 n B)F > I - 

THEOREM 2. Every nonsingular action of a countable abelian group on a 

Lebesgue space is hyperfinite. 
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PROOF. From the definition of hyperfiniteness, it is clear that it suffices to 

consider the case where G is finitely generated. Since the number of sub- 

groups of a finitely generated abelian group is countable, by Lemma 1 it 

suffices to consider aperiodic actions. The result then follows from Theorem 1 

and Lemma 2. 

REMARK. Lemma 2 gives a criterion for hyperfiniteness of nonsingular 

actions of countable groups which are not necessarily abelian. Our results 

show that all countable abelian groups satisfy this criterion. In the measure- 

preserving case, the conditions on B and F can be replaced by ,t(BF) > 1 - 

? and I nA BI > (1 - e)IBj, the latter being a condition only on the group and 

not the action. 
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