A SPANNING TREE INVARIANT FOR MARKQV SHIFTS

DOUGLAS LIND AND SELIM TUNCEL*

Abstract. We introduce a new type of invariant of block isomorphism for Markov shifts, defined
by summing the weights of all spanning trees for a presentation of the Markov shift. We give two proofs
of invariance. The first uses the Matrix-Tree Theorem to show that this invariant can be computed from
a known invariant, the stochastic zeta function of the shift. The second uses directly the definition to
show invariance under state splitting, from which all block isomorphisms can be built.
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1. Introduction. Invariants of dynamical systems typically make use of re-
current or asymptotic behavior. Examples include entropy, mixing, and periodic
points. Here we define a quantity for stochastic Markov shifts that is invariant un-
der block isomorphism, and which has a different flavor. For a given presentation
of the Markov shift, we add up the weights of all spanning trees for the graph.
Since spanning trees are maximal subgraphs without loops, this is in some sense
an operation that is orthogonal to recurrent behavior.

We prove invariance of the spanning tree quantity under blockisomorphism in
two ways. The first shows that it can be computed from the stochastic zeta function
of the Markov shift, an invariant introduced in [4]. The second is a more “bare-
hands” structural approach, using only the definition to show that it is invariant
under the elementary block isomorphisms corresponding to state splittings.

2. The Matrix-Tree Theorem. In this section we give a brief account of the
Matrix-Tree Theorem for directed graphs. See [1, I1.3] for more details.

Let G be a (finite, directed) graph. We suppose that the vertex sét isf
V =1{12,...,v}. We sometimes call verticetates Let £ be the edge set of

G. Denote the subset of edges from state statej by 8{ Puté; = Uj 8{ the

set of all edges starting at stateand&’/ = |J; 8[ the set of all edges ending at
statej.

A tree inG rooted atr € V is a subgraplt’ of G such that every vertex in
T exceptr has a unique outgoing edge1h there is no outgoing edge ih atr,
and from every vertex iff exceptr there is a unique path endingratSee Figure
1(a). We abbreviate this by saying thais atree inG atr. A tree isspanningf
it contains every state. L&t denote the set of spanning trees @nds = |, S,
be the set of all spanning treesdh

Consider the elements éfto be commuting abstract variables, and form the
ring Z[ €] of polynomials in the variables fro® with integer coefficients. For any
subgraphH of G define theveightof H to be[ [, . e € Z[€], where the product
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(a)

FiG. 1. A typical tree at-, and a graph

is over the edges i#/. For a subsef C € put=(F) = ) ,.g5e € Z[E]. The
Kirchhoff matrixK of G is thev x v matrix K = [K;;] defined by

Kij = S(E)8ij — Z(ED),

whered;; = 1if i = j and 0 otherwise. Notice that no self-loops occuikin
Let K ) denote the'th principal minor ofK, that is the determinant of the matrix
formed by removing theth row andrth column fromk . Let adjK be the adjoint
matrix of K, and let tr denote the trace of a matrix.

THEOREM 2.1 (Matrix-Tree Threorem [1, 11.3] Using the notations above,

D w®) =K, andso ) w() = tradjK]
Se8, Se8

ExampLE 1. For the graph in Figure 1(b),

b —b 0
K=|-c c+d -d
—f —e e+ f

ThenkK = ce + cf + df enumerates the spanning trees at 1, and similarly for
K@ =pe+bf andK® = bd.

3. Markov shifts. Let P = [p;;] be av x v stochastic matrix, so that; > 0
and Zj pij = 1 for everyi. We assume from now on th&t is irreducible. Let
G (P) be the directed graph with vertex sét= {1, ..., v}, and with exactly one
edge from state to statej if p;; > 0, and no such edge if;; = 0. Let€ denote
the resulting edge set f@r (P).

Theshift of finite typedetermined byG (P) is the subseX ¢ (p) of &Z defined

by
Xgppy ={...e_1e0e1--- € ez en+1 follows e, in G(P) }.

See [2, Chap. 2] for further details.
By the irreducibility assumption, there is a uniqgue Markov probability mea-
sureu p on X g(p) With transition probabilitiep;;. Letop denote the left shift on
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X¢(py, SOotha p isop-invariant. The measure-preserving systeéfg ), ip, op)
is theMarkov shift determined by .
Let O be another stochastic matrix, of possibly different dimension. We
say that the Markov shifts determined By and by Q are block isomorphidf
there is a shift-commuting measure-preserving homeomorphism between them.
In other words, a block isomorphism froX ¢(py. up, op) 10 (Xg(0), Lo, 00)
is a homeomorphismy: Xgpy — Xg(g) such thatog o ¢y = ¢ o op and
mo =ppoyt.

4. The spanning tree invariant. As in the previous section, Iét = [p;;] be
an irreducible stochastic matrix ai®l = G(P) be its associated directed graph.
If e € € goes fromi to j put p(e) = p;;. For any subgraptif of G define the
P-weight(or simply theweigh{) of H to bewp(H) =[],y p(e).

DEFINITION 4.1. Let P be an irreducible stochastic matrix, and &tenote
the set of spanning trees f6r(P). Define thespanning tree invariamtf P to be

(P) = pr(S).

Se8
p 1-p :
ExamMpLE 2. (1) If P = g 1- q} thent(P) =1— p +q. In particular,
if p=¢g=1/2thent(P) =1.
) If

0 1/2 1/2 9
P=112 0 12|, thent(P)=-.
12 172 0 4

Note that there is a uniformly three-to-one measure-preserving factor map from
this Markov shift onto the Bernoulli shift in part (1) with = g = 1/2. Thusr is
not in general preserved by such factor maps.

To justify its name, we will prove thatis invariant under block isomorphism.

THEOREM 4.1. If P and Q are irreducible stochastic matrices whose associ-
ated Markov shifts are block isomorphic, the@P) = t(Q).

We will give two proofs of invariance. The first compute&P) in terms of a
known invariant, the stochastic zeta functionfof The second is more “structural,”
showing proving invariance aof for each of the basic building blocks of a block
isomorphism.

5. First proof of invariance. Define¢p: Z[E] — R on the variables
by ¢p(e) = p(e), and extend it to a ring homomorphism. Applyigg to the
Matrix-Tree Theorem foG = G(P) gives

T(P) =) wp(S) =Y _ ¢p(w(S)) =¢p (Z w(S))

Ses NES Ses
= ¢p(trladj K]) = tr[adjpp (K)].



4 DOUGLAS LIND AND SELIM TUNCEL

Now ¢p(K) = I — P sinceP is stochastic. Hence(P) = tr[adj(/ — P)].

Let the eigenvalues a? bei; = 1,45, ..., A, Wwherei; # Land|;| <1
for 2 < j < v. Since formation of the adjoint commutes with conjugation and
trace is invariant under conjugation, conjugatifdo its Jordan form shows that

r(P) =trfadj — P)] = [ — ). (5.1)
j=2

Recall thestochastic zeta functioqy (¢) of P, defined in [4] as

o]

o =exf >0 Y we)],
1

n= CeC,

whereC,, is the set of all cycles i (P) of lengthn. The stochastic zeta function
is invariant under block isomorphism. It can be computed in term? a$

1
Cp(t) = m
Hence
(1/¢p)(1) = detll —1P] = [ T2 — 2un),
k=1
so that
@/eeY 0 =Y —m[[@-n0.
k=1 j#k
Thus

1/¢p) () =—]]d—21)) =—1(P).

j=2

This shows that (P) can be computed frorp, and hence is an invariant of
block isomorphism.

6. Invariance underin-splitting. Every blockisomorphism between Markov
shifts is a composition of basic block isomorphisms obtained from state split-
ting and permuting states. This was a fundamental discovery of R. Williams [5].
For further background on state splitting and the decomposition of block isomor-
phisms, the reader is referred to [4] as well as §2.4 and Theorem 7.1.2 of [2].
Permuting states clearly preserweso we focus on the behavior efunder state
splitting.

Letk be a fixed state ilr = G(P). There are two types of state splitting at
k: in-splitting from a partition of the incoming edgesitpand out-splitting from a
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partition of the outgoing edges fro These are handled by separate arguments,
in-splitting in this section and out-splitting in the next. As might be expected from
the directional nature of shifts of finite type, in-splitting is easier to handle that
out-splitting.

It is sufficient, as well as notationally simpler, to consider in-splittirigto
just two states. For this we partitid@f into the set§F; and»,. Form a new graph
G’ as follows. Replace stafewith two new stateg; andk,. Every edge inG
from k to j # k is duplicated as two edges @, one fromk; to j and one from
ko to j. An edgef from i to k lies in eitherFq, or F». If f € F1, then inG’ put
a corresponding edge froirto k; and no edge from to k» (if i = k, then inG’
there are edges from bokh andk; to k1); similarly if f € F». Figure 2 depicts
such an in-splitting.

F1G. 2. In-splitting a state

Preservation of measure shows that under such an in-splitting the transition
matrix P becomesP’ on G’ defined as follows. For notational convenience we
usep'(i, j) instead ofpi;. If i, j # km (m = 1,2) thenp'(i, j) = pG, j). If
i # k1, ko and the edge fromtok is in &, thenp’ (i, k,,) = p(i, k). Finally, if the
edge fromk to k is in &, thenp’(ky,, k) = p(k, k) forn = 1, 2. For example,
ifk=1,F1={1,...,¢},andF2={¢+1,..., v}, thenP’ has the form

P11 0 P12 ... Pl
P11 0 P12 ... P
p21 0 p2 ... P
P : : : :
pel 0 P2 ... P
0  pet11 pet12 -0 Prtlw
L 0 Pvl Pv2 cee Pvv |

We next construct a correspondence between certain sets of spanning trees in
G and similar sets ir’. Consider a triple of the forndT', Ty, T»), whereT is a
tree inG at some vertex, eachT,, is a tree inG atk using only edges frorff,,
(m = 1, 2), the three trees are disjoint except for the common vertexd they
span all vertices of;. We specifically allow the possibility of the empty tree (with
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no vertices or edges), and also the tree consisting of a single vertex and no edges.
In particular, ifk = r thenT is empty.

Each such tripleT, T1, T2) in G corresponds to a triplel”, T, Ty) in G/,
whereT is copied over tol” verbatim, andr, is the tree ak,, obtained from
T, (m = 1,2). Figure 3 illustrates this correspondence. This triple has the
property thatl” is a tree inG” atr, T,, is a tree inG’ atk,, form = 1, 2, all three
trees are disjoint, and they span the vertice&of There is clearly a one-to-one
correspondence between the set of such triples and those inG’.

LS
Q O Q O

N/ \ /"

Fic. 3. Correspondence of trees under an in-splitting

Let 8(T, Ty, T2) be the set of all spanning treesdhatr containingT, Ty,
andT». Similarly defineS(7’, 7], T,) in G’. Clearly the se8(G) of spanning
trees inG is the disjoint union of the (T, Ty, T2) over all possible triples, and
similarly 8(G") is the disjoint union of the5(7’, 7], T,). Hence to prove that
7(P) = ©(P), it suffices to show that

Yoo owe®= Y wpS). (6.)

Se8(T,T1,T2) 8'e8(T",T{,Ty)

Fix a triple (T, T1, T2). The only way to create a spanning treeGnat r
containing these trees is to add an edge fkiotm T'. Thus if p(k, T) denotes the
sum of the transition probabilities fromto the vertices of, it follows that

> we(S) =wp(Mwp(Twp(T2)pk, T).
Se8(T,11,T2)

Consider the corresponding tripl@”’, T;, T;) in G’. There are now three
ways to form a spanning tree ain G’ containing these trees: (1) join to T,
andkz to T', (2) join k2 to 7] andk; to 77, and (3) join bothk; andkz to 7.

The contribution of adding these two edges to the total weight is, respectively,



A SPANNING TREE INVARIANT FOR MARKOV SHIFTS 7

p'(k1, T p'(k2, T'), p'(k2, T)) p'(k1, T'), andp’(k1, T") p'(k2, T'). Hence

> wpS) = wp (T wp (THwp(Ty) x [p(ka, Ty)p' ka2, T
S'e8(T',11,T3)

+ p'(ko, T p'(k1, T") + p'(k1, T p'(k2, T")]

Let us assume that if there is an edge frérto itself in G, then this edge
liesisFy. Nowwp(T) = wp/(T"), wp(T1) = wp(T]), andwp (T2) = wp: (T}).
Furthermore p’(k1, T") = p'(k2, T') = pk, T), andp’(k1, T2) = pk, To) —
p(k, k), p'(k2, T1) = p(k, T1). Hence

p'(ka, Ty)p'(ka, T') + p'(ko, T)) p'(ka, T') + p'(ka, T p' (k2, T')
= p(k, T)[p(k, T1) + p(k, T2) — p(k. k) + p(k, T)] = p(k, T)

sinceTy andT> are disjoint except for the common vertex This proves (6.1),
and completes the proof thatis invariant under in-splitting.

7. Invariance under out-splitting. To consider out-splittings, fix a stake
in G. Partition the se; of outgoing edges fror into two setsF; andF,. Form
the out-split graplG’ as follows. Replacé with two new state; andk,. Each
incoming edge from a state# k to k is duplicated to two edges, one frano k3
and one from to k2. An edgef € 1 from k to j induces a corresponding edge
from k1 to j in G’ (if j = k, then include edges froiy to bothk; andk»), and
similarly for ¥». Figure 4 depicts a typical out-splitting fat

FIG. 4. Out-splitting a state

The matrix P’ on G’ corresponding taP is defined as follows. Ley =
Yoeeq, Ple),sothatl—qg =3 4 ple). If i, j # ky putp'(i, j) = pG, j). If
J # km putp'(ks, j) = p(k, j)/q andp’(kz, j) = p(k, )/ (L —q). If i # kn
put p'(i, k1) = q p(i,k) and p’(i, k2) = (1 — q)p(i, k). Finally, if there is a
loop atk, assume that it is contained  (the alternative case is similar). Then
put p'(k1, k1) = q p(k, k)/q = p(k, k) andp’(k1, k2) = (1 — q)p(k, k)/q. For
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example, ifk = 1,97 ={1,2,...,¢},andF> ={¢+ 1, ..., v}, then
g l1—g 1 1 7]

=p11 pli1 —p12 ... —Ppu 0 e 0
1 1 1 PLe+1 P1
0 0 0 ... 0 S
p = l1—g¢g 1—g¢
gpar A—q)p2r p22 ... p2  pP2e+l e D2y
g1 A—=q@)pur  pv2 ... Dot DPue+l e Pov_

Next, consider pairsT, U) of subgraphs of; such thatT is a tree at some
vertexr, U is a tree ak, andT andU are disjoint and contain all vertices 6f.
For each such pailT, U) let B denote the set ofimmediate predecessor states of
in U, so that € B if and only if the edge froni to k is in U. Each subseB c B
induces two subtreel§;(B) andU2(B) rooted atk and which together spaii,
whereU1(B) is the subtree ot/ including all predecessors i of states inB,
andUz(B) is defined similarly using® = B \ B.

EachB c B then yields a triple(T’, U;(B), U4(B)) in G’, whereT’ is
copied directly fromT', U;(B) is the tree inG’ atk; using the edges df1(B),
andU,(B) is the tree inG’ atk, using the edges df>(B). Thus each paiT, U)
corresponds to the collection of tripl({aéf’, Uj(B), Ué(B)) . B C B}. Figure 5
illustrates this construction.

<

Fic. 5. Correspondence of trees under an out-splitting

LetS(T, U) denote the set of spanning treesiatr containingl” andU, and
8(T’, U{(B), Uy(B)) be the set of spanning treesai containing?”, U; (B), and
U,(B). Then8(G) is the disjoint union of th&(T, U) and8(G’) is the disjoint
union of theS(T’, Uj(B), Ué(B)). Therefore it suffices to show that for each pair
(T, U) we have that

Y. wr® =) > wpr(S). (7.)

Se8(T,U) BCB §'e8(T',U;(B),Us(B))
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Fix a pair(T, U). Let
ap=pF1,T) = Z{p(e) . e € F1 ande terminates i},

andsimilarlyby = p(F1, U),a2 = p(F2, T),andby = p(F2, U). Thenay+by =
g andaz + by =1—gq.

The only additional edge needed to form a spanning tree ffbnt/) is an
edge fromk to T'. Hence

Y wp(S) =wp(DwpW)ptk, T) = wp(T)wp(U)as + az].
SeS(T,U)

Next, let B C ‘B, and form the triple(7’, U;(B), U}(B)). There are now
three ways to form a spanning trees(7”’, U;(B), U5(B)): (1) join k1 to Uj(B)
andkz to T’, (2) joinkz to U;(B) andky to T’, and (3) join bothk; andk, to 7.
Hence

Z wp(S") = wp (T Ywp (Uy(B))wp(Uy(B))P(B),
§'e8(T".U;(B).Uy(B))
where
®(B) = p'(F1, Us(B)) p'(k2, T") + p'(F2, Uy(B)) p'(k1, T")
+ p'(k1, T p' (k2. T").
Note thatwp/(T') = wp(T). Letn = |B|. SincelU;(B) uses|B| incoming

edges each of whose weight has been multiplied by the facandU,(B) uses
n — |B| edges each of whose weight is multiplied by a facter ¢, we have that

wp (U1 (B)wp (Uzp(B)) = ¢'P1(1 = )" Flwp ).
Cancelling the common termp (T)wp (U) reduces (7.1) to proving that
ar+az= Y q¢"1-q)" Plo(B). (7.2)
BCB

Now p’(k1, T') = a1/q andp’(k2, T") = a2/(1 — q). Let F1(U) denote the
set of edges iff; ending inU. Then by interchanging the order of summation see
that

Y Pl a-g Py LBy = Y Py qPla-gIPl

BCB ecF1(U) ec€ B¢

n—1
_ rle) (”_1> k(1 _ gyn—k
> p kX:;) L Jda-a

ecTF1(U)

l1-ygq l1-y¢q
=== Y pl= by.
eeF1(U) q




10 DOUGLAS LIND AND SELIM TUNCEL

Similarly,
_ q
> d"Pa— g Py (T2 Ui(B) = T b2
BCB 4
Sinceb1 = 1 — aj andby = 1 — g — ap, we obtain that
_ 1- ar ai a1 ar
Y- qla— gy Plom) = Lo 4 pt 2
A q q 99 4ql-g
_ @(g —a1) n ai(l—gq —ao) a1az
q 1-¢q q(l—gq)
=a1+ ar.

This establishes (7.2), and completes the proof.

8. Concluding remarks. (1) The possibility of using spanning trees to define
an invariant was first observed experimentally udit@thematica

(2) It is possible to obtain finer invariants by use of the matrix of powers
P' =[pj;]asin[3].

(3) If Pisv x v, then (5.1) shows that(P) < 2*~L. Thus 1+ log, t(P) is
a lower bound on the size of any irreducible Markov shift that is block isomorphic
to P.

(4) Using elementary matrix operations, one can show directlyzh@j =
7(P"), whereP’ is derived fromP using in-splitting or out-splitting as above. This
shows thatr is an invariant of block isomorphism without use of the stochastic
zeta function.

(5) Graphs with positive weights can be interpreted as electrical resistance
networks, and the use of spanning trees to compute total resistance goes back to
Kirchhoff. It may be possible to use ideas from electrical networks to find other
invariants of Markov shifts.
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