NAME:	QUIZ SECTION:
Student ID #:	

Math 112 -- Winter 2016 Final Exam

HONOR STATEMENT:

"I affirm that my work upholds the highest standards of honesty and academic integrity at the University of Washington, and that I have neither given nor received any unauthorized assistance on this exam."

SIGNATURE:

INSTRUCTIONS:

- When the exam starts, verify that your exam contains **9 pages** (including this cover page).
- Please turn your cell phone OFF and put it away for the duration of the exam.
- Unless specifically instructed otherwise, you **must show all your work in order to get full credit**. The correct answer with incorrect or missing work may result in little or no credit.
- On problems in which you use a graph, show your work by clearly drawing & labeling any lines and points you use.
- If you use a guess-and-check method when an algebraic method is available, you will not receive full credit.
- You may round your final answers to two decimal digits. Don't round any values prior to the final answer.
- You are allowed to use a calculator, a ruler, and one sheet of notes. You have 2:50 hours for this exam.

GOOD LUCK!

Problem 1	16	
Problem 2	6	
Problem 3	10	
Problem 4	8	
Problem 5	12	
Problem 6	12	
Problem 7	10	
Problem 8	14	
Problem 9	12	
Total:	100	

1 (16 pts) Compute the indicated derivatives. DO NOT SIMPLIFY. Box your final answer.

a)
$$f(t) = \sqrt{\ln(t^2 - 3t) + 7}$$

$$f'(t) =$$

b)
$$u = \frac{e^x \ln x}{x^2 + \frac{1}{x} - 7}$$

$$\frac{du}{dx} =$$

c)
$$z = 2e^{y}x + \frac{y}{x} + \ln(xy^{2}) + x$$

$$\frac{\partial z}{\partial x} =$$

$$\frac{\partial z}{\partial y} =$$

2 (6 pts) Suppose we do not have a formula for a certain function f(x), but we know that:

$$f(m+h) - f(m) = \frac{12h}{(2+m+h)(5+m)}$$

Compute f'(3). Show all steps clearly.

ANSWER:
$$f'(3) =$$

(10 pts) Compute each of the following integrals. SIMPLIFY and box your final answers.

a)
$$\int \frac{3}{x^2} - 2e^{2x} + \frac{7x^2 + 3}{x} dx$$

b)
$$\int_9^{25} \frac{3}{\sqrt{t}} + 2 \, dt$$

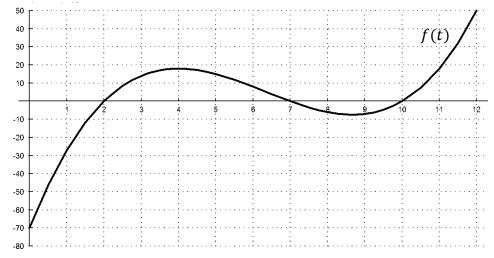
4 (8 pts) The demand and supply functions for a product are:

demand:
$$p = \frac{77}{x+1}$$

supply:
$$p = 2 + 0.5x$$

where p is the price per unit, in dollars, and x is the number of units.

Compute the consumers surplus under pure competition.


_	•		e next to each other at tin ours are given by the func	tions:	ne same
	E	Biker Anne's speed:	$a(t) = 3t^2 - 10t + 16$	miles/hour	
		Biker Bob's speed:		miles/hour	
a)	At what time during	g the first 1.5 hours a	re the two bikers farthest	apart?	
				Answer: at $t =$	hours
h)	Which hiker is ahea	nd after 1 hour, and b	y how much? Show work.		_ 110013.
IJ)	Willelf biker is affect	id after 1 flodi, and b	y now much: Snow work.	•	
			Answer: Biker	is ahead by	miles.
			Biker Bob is given by the liver the time interval from	inear function: $b(t) = 2t + t = 1$ to $t = 2.5$ hours.	10.

Answer: Bob's average speed was _____ miles per hour.

6 (12 pts) The marginal revenue and marginal cost at q hundred Things are given by the graphs below. \$/item 20 MR18 16 12 МC 10 8 6 2 hundreds of Things You also know that your fixed costs are 2 hundred dollars. a) Estimate your Total Cost for producing 300 Things. Show your work. Answer: $TC(3) \approx$ _____ hundred dollars b) Estimate the minimal profit (maximal loss), and the quantity at which it occurs. Show work. Answer: Min Profit / Max Loss \approx _____ hundred dollars, at $q \approx$ _____ hundred Things c) Estimate the change in revenue from q=3 to q=4 hundred Things. Show work. Answer: _____ hundred dollars d) Does your profit increase or decrease if you produce and sell the 301st Thing? By approximately how much?

Answer: The profit increases/decreases (circle one) by about _____ dollars

 $\boxed{7}$ (10 pts) The following is the **graph of a function** f(t).

Let $A(m) = \int_0^m f(t) dt$ be the accumulated graph of f(t). Answer the following questions. Read each question carefully!

a) For each part below, circle the correct answer. No need to justify.

i.	The value of $f(5)$ is	POSITIVE,	NEGATIVE,	or	ZERO.
ii.	The value of $f'(5)$ is	POSITIVE,	NEGATIVE,	or	ZERO
iii.	The value of $f''(5)$ is	POSITIVE,	NEGATIVE,	or	ZERO
iv.	The value of $A(7)$ is	POSITIVE,	NEGATIVE,	or	ZERO
v.	The value of $A'(7)$ is	POSITIVE,	NEGATIVE,	or	ZERO

- b) Find the longest interval during which the derivative f'(t) is **decreasing**.
- c) Estimate A'(9).

Answer: from $t = \underline{\hspace{1cm}}$ to $t = \underline{\hspace{1cm}}$

Answer: $A'(9) \approx$

- d) f(t) has inflection points at x =_____(list all, no need to justify)
- e) The local minima of A(m) are at m =______(list all, no need to justify)

8 (14 Points) You produce and sell flat-screen TV's and Blu-ray Players.
(a) (2 pts) Suppose you sell each TV for \$2000 and each Player for \$500. Give a formula for the total revenue $R(x, y)$, in dollars, which results from selling x TV's and y Players.
ANSWER: $R(x,y) =$
(b) Suppose your profit from selling <i>x</i> TV's and <i>y</i> Players is given by the function:
$P(x,y) = 0.1x^2 + 0.1y^2 - 0.6xy + 300x + 100y - 1000$
i. (2 pts) Compute the two partial derivatives of your profit function.
$P_{x}(x,y) = \underline{\hspace{1cm}}$
$P_{y}(x,y) = \underline{\hspace{1cm}}$
ii. (6 pts) Find all candidates (x, y) for local minima or maxima of the profit $P(x, y)$.
Answer: $(x, y) = $
iii. (4 pts) Suppose you've produced and sold 300 TV's and 250 Players. Use a partial derivative to estimate the increase in your profit if you sell one more TV. Show your work, clearly.
Answer: Profit will change by about \$

9 (12 pts)	The Demand Curve for selling Items has the formula:
	$p = 1 - 0.2\sqrt{q},$

where the quantity q is in hundreds of Items and the price p is in dollars per Item.

The total cost (in hundreds of dollars) to produce q hundred Items is given by the formula:

$$TC(q) = 0.01q + 0.5.$$

Let P(q) denote the **profit** (in hundreds of dollars) you earn by producing and selling q hundred Items.

a) Determine the formula for the **profit** P(q), as an expression in q. Simplify your answer.

ANSWER:
$$P(q) =$$

b) Compute the critical number(s) of the profit.

ANSWER:
$$q =$$
_____hundred Items

Use the Second Derivative Test to determine whether each critical number you found above gives a local maximum or a local minimum for the profit function, P(q). Show work clearly, and box your answer(s).