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II, (16 pts) Compute the indicated derivatives. DO NOT SIMPLIFY. Box your final answer.
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@(6 pts) Suppose we do not have a formula for a certain function f (x), but we know that
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Compute f'(3). Show all steps clearly.
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ANSWER: f'(3) =

Eklo pts) Compute each of the following integrals. SIMPLIFY and - your final answers
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A
E{s pts) The demand and supply functions for a product are
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where p is the price per unit, in dollars, and x is the number of units
Compute the consumers surplus under pure competition
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ANSWER: Consumers Surplus = $ ” L’ ’ é Lf
(You may round your final answer to the nearest two digits)




(12 pts) Two bicyclists, Anne and Bob, are next to each other at time t = 0, and travel along the same
straight road. Their respective speeds at t hours are given by the functions:

Biker Anne’s speed:  a(t) = 3t?> — 10t + 16 miles/hour

Biker Bob’s speed: b(t) =2t+10 miles/hour

a) At what time during the first 1.5 hours are the two bikers farthest apart?
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Answer: at t = qu hours.

b) Which biker is ahead after 1 hour, and by how much? Show work.
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Answer: Biker A is ahead by 4 mileq

¢) Recall that the instantaneous speed for Biker Bob is given by the linear function: b(t) = 2t + 10.
Compute the average speed of Biker Bob over the time interval fromt = 1tot = 2.5 hours.
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Answer: Bob’s average speed was



@(12 pts) The marginal revenue and marginal cost at g hundred Things are given by the graphs below.
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You also know that your fixed costs are 2 hundred dollars.

a) Estimate your Total Cost for producing 300 Things. Show your work.
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Answer: TC(3) = é{ ’ hundred dollars

b) Estimate the minimal profit (maximal loss), and the quantity at which it occurs. Show work. - -
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Answer: Min Profit =~ _— q ' G hundred dollars, at g = rq hundred Things
L 0

c) Estimate the change in revenue from g =3to q = 4 hundred Things. Show work.

L
TR(W)-TRG) = ‘éﬁe(q)d? = dneon wudu VIR = 2(54@)01)= /6

Answer: ,£ hundred dollars

d) Does your profit increase or decrease if you produce and sell the 301" Thing? By approximately how much?

MP (3 = MB(3) — Ne(3) = 15.3-12.] "= 3.2 g

Answer: The profidecreases (circle one) by about 3 \ 2-. dollars




(10 pts) The following is the graph of a function f(t).
el : :
30

Let A(m) = f;" f(t) dt be the accumulated graph of f(t). Answer the following questions.
Read each question carefully!

a) For each part below, circle the correct answer. No need to justify.

. The value of £(5) is NEGATIVE, or  ZERO.

ii.  The value of f(5) is POSITIVE, QEGATIVED or  ZERO

iii.  The value of f'(5) is POSITIVE, m or  ZERO

iv.  The value of A(7) is POSITIVE, @ or  ZERO
v.  Thevalue of A'(7) is POSITIVE, NEGATIVE, or

b) Find the longest interval during which the &rivative f'(t) is decreasing. )

whew f"<0 s g § 35 CRRESne

Answer: from t = O tot= ?’

c) Estimate A'(9).

Ay = $9) ¥ — g

Answer: A'(9) = . g

d) f(t) has inflection points at x = ? (list all, no need to justify)

e) The local minima of A(m) are at m = F ) 10 (list all, no need to justify)
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14 Points) You produce and sell flat-screen TV's and Blu-ray Players.

(a) (2 pts) Suppose you sell each TV for $2000 and each Player for $500. Give a formula for the total revenue
R(x,y), in dollars, which results from selling x TV’s and y Players.

ANSWER: R(x,y)=__ 2000 X 4+ S©O a

(b) Suppose your profit from selling x TV’s and y Players is given by the function:

P(x,y) = 0.1x* + 0.1 y* - 0.6xy + 300x + 100y — 1000

(2 pts) Compute the two partial derivatives of your profit function.
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Py =_ D2y —0.6 X +100

ik (6 pts) Find all candidates (x, y) for local minima or maxima of the profit P(x, ¥).
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Answer: (x, y) = (3?§I 6 2 S_ )

(4 pts) Suppose you’ve produced and sold 300 TV’s and 250 Players. Use a partial derivative to estimate
the increase in your profit if you sell one more TV. Show your work, clearly.

A? (\_é. &(300125-05 = 0.2 (300)-Oc6(25—0)+'330 ’;2[0

Answer: Profit will change by about $ Z l 0




'I] (12 pts) The Demand Curve for selling Items has the formula:
p = 1-02/q,

where the quantity g is in hundreds of Items and the price p is in dollars per Item.
The total cost (in hundreds of dollars) to produce ¢ hundred Items is given by the formula:
TC(q) =0.01q + 0.5.
Let P(q) denote the profit (in hundreds of dollars) you earn by producing and selling g hundred Items.

a) Determine the formula for the profit P(g), as an expression in g. Simplify your answer.

TR(9)= P9 = (I-—o,z\ﬁi)fz g -0,2@,? Ll ?—_0’2?3/?_
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ANSWER: P(q) =_— 0727 +0-?‘?Z el

b) Compute the critical number(s) of the profit.

Py= 023 100 - .
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ANSWER: g = /0 gq hundred Items

(v Use the Second Derivative Test to determine whether each critical number you found above gives a local

maximum or a local minimum for the profit function, P(q). Show work clearly, and box your answer(s).
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