MATH 112 FINAL EXAM

SPRING 2015

1. (a) HINT: Sketch the graph of $a(t)$, the derivative of the function that gives the level of ammonia at time t. The level is rising when $a(t)$ is positive, which occurs between the two times when $a(t)=0$.
ANSWER: from $t=2$ to $t=12$ hours
(b) HINT: Either use the graph of $a(t)$ to notice when $A(t)$ is changing from decreasing to increasing or from increasing to decreasing OR note whether $A^{\prime \prime}(2)=a^{\prime}(2)$ and $A^{\prime \prime}(12)=a^{\prime}(12)$ are positive or negative and apply the Second Derivative Test.
ANSWER: A has a local min at $t=2$ hours and a local max at $t=12$ hours.
(c) HINT: Sketch the graph of $b(t)=B^{\prime}(t)$, a line with positive slope that crosses the t-axis at $t=10$. When is it at its highest positive value on the interval from 0 to 30 ?
ANSWER: $t=30$ hours
(d) HINT: Compute $\frac{A(9)-A(4)}{9-4}$, noting that $A(9)-A(4)=\int_{4}^{9} a(t) d t$.

ANSWER: 68 gallons per hour
(e) HINT: Set $a(t)=b(t)$ and solve for t. Evaluate either $a(t)$ or $b(t)$ at each of these values of t and see if the rate is positive (which indicates a rising level) or negative (which indicates a falling level).
ANSWER: At $t=1.46$ hours, the levels are both falling. At $t=11.87$ hours, the levels are both rising.
2. (a) HINT: Read the graph of $M C$ to find $M C(18)$.

ANSWER: 5 dollars
(b) HINT: $T R$ is maximized at the quantity where $M R$ changes from positive to negative. Maximum $T R$ is the area under the $M R$ graph from $q=0$ to $q=18$.
ANSWER: 108 thousand dollars
(c) HINT: Compute the area between $M R$ and $M C$ from 0 to 3 . This gives $T R(3)-V C(3)=$ $T R(3)-(T C(3)-F C)=P(3)+F C$. Solve for $F C$.
ANSWER: 26.25 thousand dollars
(d) HINT: Profit is maximized at $q=12$ since $M R(12)=M C(12)$. The area between $M R$ and $M C$ from 0 to 12 gives $P(12)+F C$.
ANSWER: 33.75 thousand dollars
3. (a) HINT: First, determine that equilibrium price is $30 e^{2}$.

Then $P S=\left(24 \cdot 30 e^{2}\right)-\int_{0}^{24} 30 e^{x / 12} d x$
ANSWER: $\$ 3020.06$
(b) HINT: First, determine that equilibrium quantity is $x=12$.

Then $C S=\int_{0}^{12} \frac{500}{x+8} d x-(12 \cdot 25)$.
ANSWER: $\$ 158.15$
4. (a) i. $\frac{P(2,4.01)-P(2,4)}{0.01} \approx P_{y}(2,4)=200$
ii. $\frac{P(5,3)-P(4.99,3)}{0.01} \approx P_{x}(5,3)=500$
(b) HINT: Compute $P_{x}(7,8)$ and $P_{y}(7,8)$ and note which is bigger.

ANSWER: one more Object
5. (a) HINT: $f_{x}(x, y)=4 y^{2}-100$ and $f_{y}(x, y)=8 x y+10 y-30$. Set $f_{x}=0$ and $f_{y}=0$ and solve the resulting system of equations.
ANSWER: $\left(-\frac{1}{2}, 5\right),(-2,-5)$
(b) HINT: Create a new function $g(y)=f(1, y)=9 y^{2}-30 y+40$ and sketch its graph, noting its lowest point.
ANSWER: $g\left(\frac{5}{3}\right)=15$
6. (a) HINT: Compute $f^{\prime \prime}(x)$ and sketch its graph, noting where $f^{\prime \prime}(x)$ is positive: between the two values of x at which $f^{\prime \prime}(x)=0$.
ANSWER: from $x=1$ to $x=5$
(b) HINT: First compute $\frac{T C(2+h)-T C(2)}{h}=\frac{3 h+8}{3(1+h)}$ and then note what happens to this expression as you let h get closer and closer to 0 .
ANSWER: $M C(2)=\frac{8}{3}$
(c) $R^{\prime}(w)=4\left(\frac{5}{7 w}\right)^{3} \cdot \frac{5}{7} \cdot\left(-\frac{1}{w^{2}}\right)+w \cdot \frac{1}{15 w+9} \cdot 15+\ln (15 w+9)$
(d) HINT: $\int_{1}^{5} \frac{t^{2}+1}{t} d t=\int_{1}^{5} t+\frac{1}{t} d t$

ANSWER: 13.61

