Name \qquad
Student ID \# \qquad Section \qquad

HONOR STATEMENT

"I affirm that my work upholds the highest standards of honesty and academic integrity at the University of Washington, and that I have neither given nor received any unauthorized assistance on this exam."

SIGNATURE:

1	12	
2	12	
3	14	
4	12	
Total	50	

- Check that your exam contains 4 problems.
- You are allowed to use a scientific (non-graphing) calculator, a ruler, and one sheet of handwritten notes. All other sources are forbidden.
- Do not use scratch paper. If you need more room, use the back of the page and indicate to the grader you have done so.
- Turn your cell phone OFF and put it away for the duration of the exam.
- You may not listen to headphones or earbuds during the exam.
- You must show your work. Clearly label lines and points that you are using and show all calculations. The correct answer with no supporting work may result in no credit.
- If you use a guess-and-check method when an algebraic method is available, you may not receive full credit.
- When rounding is necessary, you may round your final answer to two digits after the decimal.
- There are multiple versions of the exam, you have signed an honor statement, and cheating is a hassle for everyone involved. DO NOT CHEAT.
- Put your name on your sheet of notes and turn it in with the exam.

1. (12 points) Compute the derivative. DO NOT SIMPLIFY.
(a) $s=\sqrt{t^{5}}\left(4 t^{7}-\frac{1}{t^{4}}\right)^{3}$
(b) $y=\frac{7}{3\left(2 x^{3}+x\right)^{5}}+\frac{8\left(2 x^{3}+x\right)^{5}}{11}$
(c) $z=\left(\frac{w^{3}+3 w+10}{w}\right)^{15}$
2. (12 points) The graph below shows the function $y=f(x)$.

$$
\text { ANSWER: } \frac{f(7+h)-f(7)}{h} \approx
$$

(b) Find a value of a (other than 15) at which $f^{\prime}(a)=f^{\prime}(15)$.

ANSWER: $a=$ \qquad
(c) Give an interval of length 5 on which $f^{\prime}(x)$ is negative. If there is no such interval, circle NONE.

ANSWER: from $x=$ \qquad to $x=$ \qquad or NONE
(d) Give an interval on which the graph of $f^{\prime}(x)$ looks like this:

If there is no such interval, circle NONE.
\qquad to $x=$ \qquad or NONE
3. (14 points) Two moving Objects, a Red Object and a Blue Object, begin from the same location at $t=0$. After t minutes, the Red Object is $R(t)$ feet from its starting location and the Blue Object is $B(t)$ feet from its starting location, and these are given by the formulas:

$$
R(t)=2 t^{2}+6 t \quad \text { and } \quad B(t)=-4 t^{2}+159 t .
$$

(a) Find a formula for the average speed of the Red Object from $t=a$ to $t=a+h$. Simplify your formula as much as possible. Place a box around your final answer.
(b) Find a time at which the Red Object's instantaneous speed is the same as the average speed of the Blue Object from $t=3$ to $t=7$.

ANSWER: $t=$ \qquad minutes
(c) During what interval of time is the Blue Object traveling faster than the Red Object?

ANSWER: from $t=$ \qquad to $t=$ \qquad minutes
(d) How far apart are the Objects and how fast are they traveling when they have the same instantaneous speed?

ANSWER: They are \qquad ft apart, traveling at a rate of \qquad ft per min.

4. (12 points)

You sell Things. The formulas for marginal revenue and marginal cost at q hundred Things are given by:

$$
\begin{gathered}
M R(q)=-0.85 q+10.5 \quad \text { and } \\
M C(q)=0.25 q^{2}-3.6 q+15
\end{gathered}
$$

Their graphs are given at right.

(a) Give the longest interval on which profit is increasing.

ANSWER: from $q=$ \qquad to $q=$ \qquad hundred Things
(b) Find the quantity at which total revenue is largest.

ANSWER: $q=$ \qquad hundred Things
(c) Approximate the change in total cost if production increases from 900 to 901 Things. Include units.

ANSWER: \qquad UNITS: \qquad
(d) Find the quantity at which $T C^{\prime \prime}(q)=0$.
\qquad hundred Things

