Name \qquad
Student ID \# \qquad Section \qquad

HONOR STATEMENT

"I affirm that my work upholds the highest standards of honesty and academic integrity at the University of Washington, and that I have neither given nor received any unauthorized assistance on this exam."

SIGNATURE:

1	12	
2	10	
3	12	
4	16	
Total	50	

- Check that your exam contains 4 problems.
- You are allowed to use a scientific (non-graphing) calculator, a ruler, and one sheet of handwritten notes. All other sources are forbidden.
- Do not use scratch paper. If you need more room, use the back of the page and indicate to the grader you have done so.
- Turn your cell phone OFF and put it away for the duration of the exam.
- You may not listen to headphones or earbuds during the exam.
- You must show your work. Clearly label lines and points that you are using and show all calculations. The correct answer with no supporting work may result in no credit.
- If you use a guess-and-check method when an algebraic method is available, you may not receive full credit.
- When rounding is necessary, you may round your final answer to two digits after the decimal.
- There are multiple versions of the exam, you have signed an honor statement, and cheating is a hassle for everyone involved. DO NOT CHEAT.
- Put your name on your sheet of notes and turn it in with the exam.

1. (12 points)
(a) Compute $\frac{d y}{d x}$. DO NOT SIMPLIFY.

$$
\begin{aligned}
& y=\frac{\ln (4 x)}{5 x^{2}}+e^{x(3 x+1)^{4}} \\
& \frac{d y}{d x}=
\end{aligned}
$$

(b) Evaluate the integral.
i. $\int\left(\frac{e^{6 x}}{6}+\frac{3 x^{4}+10}{x^{5}}\right) d x$
ii. $\int_{1}^{5}\left(\frac{12}{t^{2}}+2 t\right) d t$
2. (10 points) Mick sells Items and knows that the total cost (in dollars) for selling q Items is given by

$$
T C(q)=874.8+0.3 q^{2} .
$$

Recall that average cost is given by $A C(q)=\frac{T C(q)}{q}$.
(a) Find the critical value of $A C(q)$.

ANSWER: $q=$ \qquad Items
(b) Use the Second Derivative Test to determine whether the critical value you found in part (a) gives a local maximum or a local minimum of average cost.

ANSWER: (circle one) local maximum local minimum cannot determine (c) Mick knows that, when q Items are sold, marginal revenue is

$$
M R(q)=8 e^{0.04 q} \text { dollars per Item. }
$$

Find the total revenue if 30 Items are sold.
\qquad
3. (12 points) Bianca sells Things and knows that, when q hundred Things are produced and sold, marginal revenue and marginal cost (both in dollars per Thing) are given by:

$$
M R(q)=25-4 q \text { and } M C(q)=2+6 q
$$

In addition, when Bianca sells 3 hundred Things, her profit is 18 hundred dollars.
(a) Find the formulas for Bianca's total revenue and variable cost at q hundred Things.

ANSWER: $T R(q)=$ \qquad

$$
V C(q)=
$$

\qquad
(b) Find Bianca's fixed cost.
\qquad hundred dollars
(c) Find the maximum possible profit for selling Things.
4. (16 points) The altitude, in feet, of a hot-air balloon at time t minutes is given by a function $A(t)$. The graph below shows the balloon's rate of ascent at time t. The rate of ascent is given by the function $r(t)$.

FOR THIS PROBLEM, YOU ARE NOT REQUIRED TO SHOW ANY WORK. JUST GIVE ANSWERS.
(a) Give the times in the first 5 minutes at which the graph of $r(t)$ has horizontal tangents.

ANSWER: (list all) $t=$ \qquad minutes
(b) Give the times in the first 5 minutes at which the graph of $A(t)$ has horizontal tangents.

ANSWER: (list all) $t=$ \qquad minutes
(c) Give the time in the first 5 minutes when the balloon is at its highest altitude.

ANSWER: $t=$ \qquad minutes
(d) Give the time in the first 5 minutes when the balloon is rising the fastest.

ANSWER: $t=$ \qquad minutes
(e) Give two intervals during which the balloon is falling and getting slower.

$$
\begin{array}{rlrl}
\text { ANSWER: from } t & =_ \text {to } t & = \\
\text { from } t & = & \text { to } t & =
\end{array}
$$

(f) Is the graph of $A(t)$ concave up or concave down at $t=2.5$?

ANSWER: (circle one) concave up concave down cannot determine
(g) Compute $A(9)-A(4)$.
\qquad

