Name \qquad
Student ID \# \qquad Section \qquad

HONOR STATEMENT

"I affirm that my work upholds the highest standards of honesty and academic integrity at the University of Washington, and that I have neither given nor received any unauthorized assistance on this exam."

SIGNATURE:

1	6	
2	12	
3	16	
4	16	
Total	50	

- Check that your exam contains 4 problems.
- You are allowed to use a TI30-XIIS calculator, a ruler, and one sheet of hand-written notes. All other sources are forbidden.
- Do not use scratch paper. If you need more room, use the back of the page and indicate to the grader you have done so.
- Turn your cell phone OFF and put it away for the duration of the exam.
- You may not listen to headphones or earbuds during the exam.
- You must show your work. Clearly label lines and points that you are using and show all calculations. The correct answer with no supporting work may result in no credit.
- If you use a guess-and-check method when an algebraic method is available, you may not receive full credit.
- When rounding is necessary, you may round your final answer to two digits after the decimal.
- There are multiple versions of the exam, you have signed an honor statement, and cheating is a hassle for everyone involved. DO NOT CHEAT.
- Put your name on your sheet of notes and turn it in with the exam.

1. (6 points) Compute the indefinite integral. Put a box around your answer.
(a) $\int \frac{3 x+10}{x^{6}}+\frac{4}{\sqrt[3]{x}} d x$
(b) $\int\left(\frac{1}{x}+3\right)\left(x^{2}-1\right) d x$
2. (12 points) Below is the graph of a function $f(x)$.

From among the points labeled A through G, circle all points at which each of the following criteria are satisfied. (Points may be circled more than once.)

$f(x)$ has a local minimum	A	B	C	D	E	F	G
$f(x)$ is concave down	A	B	C	D	E	F	G
$f(x)$ has a horizontal point of inflection	A	B	C	D	E	F	G
$f^{\prime}(x)>0$ and $f^{\prime \prime}(x)<0$	A	B	C	D	E	F	G
$f^{\prime}(x)>0$ and $f^{\prime \prime}(x)=0$	A	B	C	D	E	F	G
$f^{\prime \prime}(x)>0$	A	B	C	D	E	F	G

3. (16 points) You produce Items. Your average cost to produce q Items is given by a function $A C(q)$. The derivative of average cost, in dollars per Item, is

$$
A C^{\prime}(q)=\frac{1}{25}-\frac{36}{q^{2}}
$$

(a) Find the positive value of q at which the graph of average cost has a horizontal tangent line.

ANSWER: $q=$ \qquad
(b) Apply the Second Derivative Test to determine whether your answer to part (a) gives a local maximum or a local minimum of average cost.

ANSWER: (circle one) local maximum local minimum
(c) From experience, you know that, when you produce 3 Items, your average cost is $\$ 62.78$ per Item. Find the formula for $A C(q)$.

ANSWER: $A C(q)=$ \qquad
(d) Recall that $A C(q)=\frac{T C(q)}{q}$. Find the largest value of marginal cost on the interval from $q=0$ to $q=50$ Items.
\qquad
4. (16 points) Water flows into Vat A with an instantaneous rate of flow given by

$$
a(t)=4 e^{0.01 t}
$$

where t is in hours after midnight and the rate, $a(t)$, is in gallons per hour.
(a) Compute $\int_{1}^{5} a(t) d t$.

$$
\text { ANSWER: } \int_{1}^{5} a(t) d t=
$$

\qquad
(b) Describe, in terms of the water in the vat, what your answer to part (a) represents.
(c) The amount in Vat B, in gallons, is given by

$$
B(t)=(3 t+4) \ln \left(t^{2}+1\right)+\frac{50}{t+2} .
$$

Find a formula for the instantaneous rate of flow into Vat B at time t. You do not need to simplify. Put a box around your answer.
(d) Let $A(t)$ represent the amount, in gallons, in Vat A after t hours. At $t=0$, Vat A and Vat B contain the same amount of water.
How much water is in Vat A at $t=10$?

