MATH 112 Exam II Spring 2016

Name _____

Student ID #_____

Section _____

HONOR STATEMENT

"I affirm that my work upholds the highest standards of honesty and academic integrity at the University of Washington, and that I have neither given nor received any unauthorized assistance on this exam."

SIGNATURE:_

1	6	
2	12	
3	16	
4	16	
Total	50	

- Check that your exam contains 4 problems.
- You are allowed to use a TI30-XIIS calculator, a ruler, and one sheet of hand-written notes. All other sources are forbidden.
- Do not use scratch paper. If you need more room, use the back of the page and indicate to the grader you have done so.
- Turn your cell phone OFF and put it away for the duration of the exam.
- You may not listen to headphones or earbuds during the exam.
- You must show your work. Clearly label lines and points that you are using and show all calculations. The correct answer with no supporting work may result in no credit.
- If you use a guess-and-check method when an algebraic method is available, you may not receive full credit.
- When rounding is necessary, you may round your final answer to two digits after the decimal.
- There are multiple versions of the exam, you have signed an honor statement, and cheating is a hassle for everyone involved. DO NOT CHEAT.
- Put your name on your sheet of notes and turn it in with the exam.

GOOD LUCK!

1. (6 points) Compute the indefinite integral. Put a box around your answer.

(a)
$$\int \frac{3x+10}{x^6} + \frac{4}{\sqrt[3]{x}} dx$$

(b)
$$\int \left(\frac{1}{x}+3\right) \left(x^2-1\right) dx$$

2. (12 points) Below is the graph of a function f(x).

From among the points labeled A through G, circle **all points** at which each of the following criteria are satisfied. (Points may be circled more than once.)

f(x) has a local minimum		В	C	D	E	F	G
f(x) is concave down		В	C	D	E	F	G
f(x) has a horizontal point of inflection		В	C	D	E	F	G
f'(x) > 0 and $f''(x) < 0$	A	В	C	D	E	F	G
f'(x) > 0 and $f''(x) = 0$		В	C	D	E	F	G
f''(x) > 0	A	В	С	D	E	F	G

3. (16 points) You produce Items. Your average cost to produce q Items is given by a function AC(q). The **derivative** of average cost, in dollars per Item, is

$$AC'(q) = \frac{1}{25} - \frac{36}{q^2}.$$

(a) Find the positive value of q at which the graph of **average cost** has a horizontal tangent line.

ANSWER: q =_____

(b) Apply the Second Derivative Test to determine whether your answer to part (a) gives a local maximum or a local minimum of **average cost**.

ANSWER: (circle one) local maximum local minimum
(c) From experience, you know that, when you produce 3 Items, your average cost is \$62.78 per Item. Find the formula for AC(q).

ANSWER: AC(q) =_____

(d) Recall that $AC(q) = \frac{TC(q)}{q}$. Find the largest value of **marginal cost** on the interval from q = 0 to q = 50 Items.

4. (16 points) Water flows into Vat A with an instantaneous rate of flow given by

$$a(t) = 4e^{0.01t}$$

where t is in hours after midnight and the rate, a(t), is in gallons per hour.

(a) Compute $\int_{1}^{5} a(t) dt$.

ANSWER:
$$\int_{1}^{5} a(t) dt =$$

(b) Describe, in terms of the water in the vat, what your answer to part (a) represents.

(c) The amount in Vat B, in gallons, is given by

$$B(t) = (3t+4)\ln(t^2+1) + \frac{50}{t+2}.$$

Find a formula for the instantaneous rate of flow into Vat B at time t. You do not need to simplify. Put a box around your answer.

(d) Let A(t) represent the amount, in gallons, in Vat A after t hours. At t = 0, Vat A and Vat B contain the same amount of water. How much water is in Vat A at t = 10?