1 (a) Don: $t=\frac{10}{\sqrt{3}} \approx 5.774$ seconds.
Ellen: $t=\frac{-3+\sqrt{409}}{2} \approx 8.612$ seconds.
(b) At $t=3 / 2=1.5$ seconds.
(c) At $t=-3+\sqrt{89} \approx 6.434$ seconds.
(d) The greatest distance is $9 / 8=1.125$ feet and it occurs at $t=3 / 4=0.75$ seconds.

2 (a) The intersection points of the line $y=3 x$ and the circle $(x-60)^{2}+(y-120)^{2}=20^{2}$ are $(40,120)$ (which is the entrance point) and $(44,132)$ (the point we want).
(b) For $t=\frac{15 \sqrt{10}}{44} \approx 1.078$ seconds.
(c) The shortest distance that Frank gets to the streetlight is along a line perpendicular to his path. Thus the closest he gets to the light is at the intersection of his path $y=3 x$ with the perpendicular line through the point $S=(60,120)$. Since Frank's line is $y=3 x$, the perpendicular line has slope $m=-1 / 3$. It goes through the center of the circle $S=(60,120)$, so the equation of the perpendicular line is $y=-\frac{1}{3} x+140$. The intersection of $y=3 x$ and $y=-\frac{1}{3} x+140$ is $(x, y)=(42,126)$. Thus Frank is closest to the streetlight at the point $(x, y)=(42,126)$.

3 (a) The constant c is the stretch factor. In our case, a picture that was 8 units wide (from -4 to $+4)$ has been "stretched" (compressed, really) to a picture that is 4 units wide (-1 to +3). Thus the stretch factor c is $1 / 2$. (Note: this was incorrect in some earlier versions!) The constant d is the horizontal shift, which is 1 unit to the right. Thus $d=1$.
(b) The function $f(x)$ is given by

$$
y=f(x)= \begin{cases}8-\sqrt{16-x^{2}} & \text { if }-4 \leq x \leq 0 \\ 4-x & \text { if } 0<x \leq 4\end{cases}
$$

Thus the domain is $\{x:-4 \leq x \leq 4\}$.

