MATH 120A,C ExaM TwoO SOLUTIONS AUTUMN, 2001

(a)

The graph is given below. To find the amplitude, period, phase shift, and the mean (vertical
shift), see part (b), below.
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(The horizontal line shows the mean at y = 20.)

We're considering the depth of the squid. The largest (maximum) value is 35 feet, the smallest
(minimum) value is 5 feet, so the mean is D = (35+5)/2 = 20 feet. The amplitude is therefore
A=max—D =35—-20=15 (or A= D — min = 20 — 5 = 15) feet. The squid goes through
two cycles (periods) in 6 minutes, so the period is B = 3 minutes. Finally, we’re told that the
time at the maximum is ¢yax = 1.75 minutes (that’s 1 minute, 45 seconds), so one possible
phase shift is C' = tjax — B/4 = 1 minute. Thus our formula is

2
d(t) = 15sin (?ﬂ(t - 1)) +20.
This question simply asks for d(5). Computation shows that this is d(5) = 15sin(87/3) + 20
feet, or 20 4 15v/3/2 feet, or roughly 32.990 feet.

Now we are asked to find the first time after t = 1 with d(¢) = 8 feet. Thus,

2
15sin <?7T(t - 1)) +20 =8,

sin <2§(t _ 1)> _ 08,

We’ve reduced the problem to solving sin(f) = —0.8 for 0, then setting 6 = 2%(t — 1) and
solving for t.

or

First, let’s find what solutions there are for sin(d) = —0.8. The first is the principal
solution, #; = sin~!(—0.8) ~ —0.9272952 radians. The second, the symmetry solution, is
05 = m—sin~!(—0.8) ~ 4.0688879 radians. These correspond to t; = 1+ 2 sin™!(—0.8) ~ 0.557
minutes and t; = 1 + 5= (7 — sin~!(—0.8)) ~ 2.943 minutes. All other solutions follow from
these two by adding multiples of the period (which is B = 3 here) to t1 or to. Thus the first
solution after ¢t = 1 is ¢t &~ 2.943 minutes.

To find o and  (in degrees) in the triangle below, we begin by finding the sides x and y that
I've labeled in the drawing.
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By looking at the small triangle, we can see that cos(55°) = /6 and sin(55°) = y/6, so
x = 6cos(55°) ~ 3.4414586 and y = 6sin(55°) ~ 4.9149123.

From the big triangle, we can see that tan(3) = y/(7 + z), so
_ 6 sin(55°)
=tan ! | ——— 2
f = tan <7+ 6 cos(55°)
There are then several ways to get a. The easiest is to notice that o + = 55°, so that
a =55 — 3~ 29.793°,
From the picture, we know that sin(f) = 4/6. Also from the picture, we know that § < 6 <,

so 0 # sin™'(4/6). (Recall that the range of sin™' is —Z < y < Z.) Hence § must be the
symmetry solution: § = 7 — sin~!(4/6) ~ 2.412 radians.

> ~ 25.207°.

Recall that the slope of this line must be tan(f), so tan(d) = 4. But 6§ > 7, so again
6 # tan—1(4). The angle tan~!(4) is the angle between the positive z-axis and the line y = 4z,
so this time 6 = 7 + tan~1(4) ~ 4.467 radians.

To find f~!(z), we switch 2 and y and solve for y (essentially we're just solving for x in terms of

Y): x = 3;%31 We get z(y—3) =3y—1,soyr—3y =3z —1,ory = 3;__31. Hence f~!(z) = ?f—__?)l
(which is, in fact, also f(z).) The domain of this function is all real numbers except x = 3.
We do the same thing for g(z) = 2 +1. We get x = y> + 1, s0 y = +v/x — 1. To get a
function, we need to choose one: let’s take g~!(z) = ++v/x — 1. The domain of this function is
real numbers z > 1.
The vertical asymptote of the graph y = f(z) is where the denominator x — 3 is zero but the
numerator 3z — 1 is not. This happens at x = 3, the vertical asymptote.
The horizontal asymptote is found by multiplying the top and bottom by 1/z:

3xr—1 1/z 3-1/x
flay= 20 ST 0TI

r—3 1/x 1-3/x

As x gets large (as a positive or negative number), 1/x gets close to zero, so f(z) gets close to
3/1. Thus the horizontal asymptote is y = 3.

We have two wheels whose linear speeds are the same, and we are asked about or given
information about their angular speeds. Thus we should probably be using the formula v = rw.
To distinguish between the large and small wheel, I'll use a subscript L and S.

We are told that wy;, = 100 RPM, r;, = 8 inches, and rg = 3 inches. Also, we have that v;, = vg.
If both wy, and wg are in radians per time unit, then we get
TSWs = Vg (the basic formula)
=0y (the linear speeds are the same)
= rrwr(the basic formula again).

Thus, wg = (r/rs)wr (in any units). Thus we have wg = $(100 RPM) = 23 RPM =~ 266.667
RPM.



