1 (a) The graph is given below. To find the amplitude, period, phase shift, and the mean (vertical shift), see part (b), below.

(The horizontal line shows the mean at $y=20$.)
(b) We're considering the depth of the squid. The largest (maximum) value is 35 feet, the smallest (minimum) value is 5 feet, so the mean is $D=(35+5) / 2=20$ feet. The amplitude is therefore $A=\max -D=35-20=15$ (or $A=D-\min =20-5=15$) feet. The squid goes through two cycles (periods) in 6 minutes, so the period is $B=3$ minutes. Finally, we're told that the time at the maximum is $t_{\text {max }}=1.75$ minutes (that's 1 minute, 45 seconds), so one possible phase shift is $C=t_{\max }-B / 4=1$ minute. Thus our formula is

$$
d(t)=15 \sin \left(\frac{2 \pi}{3}(t-1)\right)+20
$$

(c) This question simply asks for $d(5)$. Computation shows that this is $d(5)=15 \sin (8 \pi / 3)+20$ feet, or $20+15 \sqrt{3} / 2$ feet, or roughly 32.990 feet.
(d) Now we are asked to find the first time after $t=1$ with $d(t)=8$ feet. Thus,

$$
15 \sin \left(\frac{2 \pi}{3}(t-1)\right)+20=8
$$

or

$$
\sin \left(\frac{2 \pi}{3}(t-1)\right)=-0.8
$$

We've reduced the problem to solving $\sin (\theta)=-0.8$ for θ, then setting $\theta=\frac{2 \pi}{3}(t-1)$ and solving for t.
First, let's find what solutions there are for $\sin (\theta)=-0.8$. The first is the principal solution, $\theta_{1}=\sin ^{-1}(-0.8) \approx-0.9272952$ radians. The second, the symmetry solution, is $\theta_{2}=\pi-\sin ^{-1}(-0.8) \approx 4.0688879$ radians. These correspond to $t_{1}=1+\frac{3}{2 \pi} \sin ^{-1}(-0.8) \approx 0.557$ minutes and $t_{2}=1+\frac{3}{2 \pi}\left(\pi-\sin ^{-1}(-0.8)\right) \approx 2.943$ minutes. All other solutions follow from these two by adding multiples of the period (which is $B=3$ here) to t_{1} or t_{2}. Thus the first solution after $t=1$ is $t \approx 2.943$ minutes.

2 (a) To find α and β (in degrees) in the triangle below, we begin by finding the sides x and y that I've labeled in the drawing.

By looking at the small triangle, we can see that $\cos \left(55^{\circ}\right)=x / 6$ and $\sin \left(55^{\circ}\right)=y / 6$, so

$$
x=6 \cos \left(55^{\circ}\right) \approx 3.4414586 \quad \text { and } \quad y=6 \sin \left(55^{\circ}\right) \approx 4.9149123 .
$$

From the big triangle, we can see that $\tan (\beta)=y /(7+x)$, so

$$
\beta=\tan ^{-1}\left(\frac{6 \sin \left(55^{\circ}\right)}{7+6 \cos \left(55^{\circ}\right)}\right) \approx 25.207^{\circ} .
$$

There are then several ways to get α. The easiest is to notice that $\alpha+\beta=55^{\circ}$, so that $\alpha=55^{\circ}-\beta \approx 29.793^{\circ}$.
(b) From the picture, we know that $\sin (\theta)=4 / 6$. Also from the picture, we know that $\frac{\pi}{2}<\theta<\pi$, so $\theta \neq \sin ^{-1}(4 / 6)$. (Recall that the range of $\sin ^{-1}$ is $-\frac{\pi}{2} \leq y \leq \frac{\pi}{2}$.) Hence θ must be the symmetry solution: $\theta=\pi-\sin ^{-1}(4 / 6) \approx 2.412$ radians.
(c) Recall that the slope of this line must be $\tan (\theta)$, so $\tan (\theta)=4$. But $\theta>\pi$, so again $\theta \neq \tan ^{-1}(4)$. The angle $\tan ^{-1}(4)$ is the angle between the positive x-axis and the line $y=4 x$, so this time $\theta=\pi+\tan ^{-1}(4) \approx 4.467$ radians.

3 (a) To find $f^{-1}(x)$, we switch x and y and solve for y (essentially we're just solving for x in terms of $y): x=\frac{3 y-1}{y-3}$. We get $x(y-3)=3 y-1$, so $y x-3 y=3 x-1$, or $y=\frac{3 x-1}{x-3}$. Hence $f^{-1}(x)=\frac{3 x-1}{x-3}$ (which is, in fact, also $f(x)$.) The domain of this function is all real numbers except $x=3$.
We do the same thing for $g(x)=x^{2}+1$. We get $x=y^{2}+1$, so $y= \pm \sqrt{x-1}$. To get a function, we need to choose one: let's take $g^{-1}(x)=+\sqrt{x-1}$. The domain of this function is real numbers $x \geq 1$.
(b) The vertical asymptote of the graph $y=f(x)$ is where the denominator $x-3$ is zero but the numerator $3 x-1$ is not. This happens at $x=3$, the vertical asymptote.
The horizontal asymptote is found by multiplying the top and bottom by $1 / x$:

$$
f(x)=\frac{3 x-1}{x-3} \cdot \frac{1 / x}{1 / x}=\frac{3-1 / x}{1-3 / x} .
$$

As x gets large (as a positive or negative number), $1 / x$ gets close to zero, so $f(x)$ gets close to $3 / 1$. Thus the horizontal asymptote is $y=3$.
(c) We have two wheels whose linear speeds are the same, and we are asked about or given information about their angular speeds. Thus we should probably be using the formula $v=r \omega$. To distinguish between the large and small wheel, I'll use a subscript L and S.
We are told that $\omega_{L}=100 \mathrm{RPM}, r_{L}=8$ inches, and $r_{S}=3$ inches. Also, we have that $v_{L}=v_{S}$. If both ω_{L} and ω_{S} are in radians per time unit, then we get

$$
\begin{aligned}
r_{S} \omega_{S} & =v_{S} \quad \text { (the basic formula) } \\
& =v_{L} \quad \text { (the linear speeds are the same) } \\
& =r_{L} \omega_{L}(\text { the basic formula again }) .
\end{aligned}
$$

Thus, $\omega_{S}=\left(r_{L} / r_{S}\right) \omega_{L}$ (in any units). Thus we have $\omega_{S}=\frac{8}{3}(100 \mathrm{RPM})=\frac{800}{3} \mathrm{RPM} \approx 266.667$ RPM.

