\qquad

FINDING SOLUTIONS TO STUFF

1. Graph the function $\mathrm{y}=\sin (\mathrm{x})$ (where x is in radians, of course).
2. Find all the solutions to $3 / 4=\sin (x)$ by the following steps:
(a) Draw the line $y=3 / 4$ on the graph. Get a good guess where the solutions should be.
(b) Find the principal solution of the equation $3 / 4=$ $\sin (x)$ using the $\sin ^{-1}$ function on your calculator
(c) Find the symmetry solution to the principal
 solution. (It might help to sketch sine.)
(d) Find all the solutions to $3 / 4=\sin (x)$. Use the $2 \pi n$ notation we talked about in class.
3. Graph the function $y=3 \cos (2(x-1))$.
4. Find all the solutions to $2=3 \cos (2(x-1))$ by the following steps:
(a) Draw the line $\mathrm{y}=2$ on the graph. Get a good guess where the solutions should be.
(b) Forget x for now. Find the principal solution of the equation $2=3 \cos (\theta)$ using the $\cos ^{-1}$ function on your calculator.
(c) Find the symmetry solution to the principal
 solution. (It might help to sketch cosine.)
(d) Find all the solutions to $2=3 \cos (\theta)$. Use the $2 \pi n$ notation we talked about in class.
(e) Plug in $2 \mathrm{x}-1$ for θ in the forms you found in (d). Solve for x .
5. Following the steps above find all solutions to the equation $-13=5 \tan \left(\pi(x+1)^{3}\right)$.

You don't have to graph the function. The graph is here to help you if you want. Remember that tangent is π-periodic, not 2π.

