MATH 120D
Exam 2
Version 1
November 21, 2002

Name \qquad
Section \qquad

1	8	
2	6	
3	10	
4	8	
5	12	
6	6	
Total	50	

- You are allowed to use a calculator and one sheet of notes.
- Complete all questions.
- Show all your work and clearly indicate your final answer.
- When rounding is necessary, round your final answer to two digits after the decimal.
- Give answers with appropriate units.
- Raise your hand if you have a question.
- You have 50 minutes to complete the exam.

1. (8 points) Two pulleys are connected by a belt as shown. One pulley has radius 50 cm and the other has radius 30 cm . The larger pulley rotates at 12 RPM. Find the angular speed of the smaller pulley in RPM.

ANSWER: \qquad RPM
2. (6 points) Let $f(x)=\frac{3 x-1}{x+4}$. Compute $f^{-1}(5)$.

ANSWER: $f^{-1}(5)=$ \qquad
3. (10 points) Let

$$
f(x)=\frac{2(x-1)(x+3)}{5(x+2)(x-6)}
$$

Find each of the following:

- the domain of $f(x)$
- the zeros of $f(x)$
- the y-intercept of $f(x)$
- the vertical asymptote(s) of $f(x)$
- the horizontal asymptote of $f(x)$

4. (8 points)
(a) Find y and z.

ANSWER: $y=$ \qquad $z=$ \qquad
(b) Find x, α, and β. Give α and β in radians.

ANSWER: $x=$ \qquad

$$
\alpha=
$$

\qquad $\beta=$
5. (12 points) Lisa is sick with Sinusoidal Fever. Her temperature is a sinusoidal function of time. Let t be the time in hours since noon on Monday. At 3 p.m. $(t=3)$, Lisa's temperature is reaching its maximum of 104.6 degrees for the first time. At 3 p.m. on Tuesday (24 hours later), her temperature is reaching its minimum of 98.6 degrees for the second time.
(a) (3 points) The following is a graph (without units) of $T(t)$, Lisa's temperature t hours since noon on Monday. Give the coordinates of the points a, b, and c.

ANSWER: a \qquad b \qquad c \qquad
(b) (4 points) In standard form, $T(t)=A \sin \left[\frac{2 \pi}{B}(t-C)\right]+D$. Give the values of A, B, C, and D.
\qquad
\qquad

$$
C=
$$

\qquad

$$
D=
$$

\qquad
(c) (5 points) From noon on Monday to noon on Tuesday ($\mathrm{t}=24$), how many hours is Lisa's temperature more than 100 degrees?

ANSWER: \qquad hours
6. (6 points) Let $f(x)=|x|$ and

$$
g(x)= \begin{cases}x & \text { if } x<-2 \\ -2 & \text { if } x \geq-2\end{cases}
$$

Give the multi-part rule for $f(x)+g(x)$.

