MATH 120 - EXAM I Hints and Answers

Version 1
Autumn 2005

1. ANSWER: $4 x+2 h$
2. HINT: The quadratic equation $a x^{2}+b x+c=0$ will have exactly one solution if $b^{2}-4 a c=0$. ANSWER: $\alpha= \pm \sqrt{3}$
3. HINT: With a coordinate system imposed so that the origin is at Pam's apartment building, the circle that defines the range of the "hotspot" is $(x-3)^{2}+(y-0.25)^{2}=0.3125^{2}$. (The radius of the circle is 1650 feet, which is 0.3125 miles.) The circle intersects the x-axis at $x=3 \pm 0.1875$. So, Pam is in the circle for a distance of $2 \times 0.1875=0.375$ miles. Use the fact that the bus travels 40 mph to find the amount of time she is in the circle in hours and convert to minutes.

ANSWER: 0.5625 minutes
4. (5 points each)
(a) HINT: Enrollment reaches a maximum of 3600 students at time $t=10$. This means that the vertex of the parabola is at the point $(10,3600)$. That gives the values of h and k. So, $C(t)=a(t-10)^{2}+3600$. To find a, use the fact that $C(0)=a(0-10)^{2}+3600$ and $C(0)=852$. That gives the equation $100 a+3600=852$. Solve for a.
ANSWER: $h=10, k=3600, a=-27.48$
(b) HINT: Find the equation of the line through the points $(0,200)$ and $(10,950)$.

ANSWER: $L(t)=75 t+200$
(c) HINT: The right-handed population is the difference between the total enrollment and the left-handed population. That is, $R(t)=C(t)-L(t)$, where $C(t)=-27.48(t-10)^{2}+$ 3600 and $L(t)=75 t+200$. After some simplification, $R(t)=-27.48 t^{2}+474.6 t+652$. This is a quadratic, whose graph is a parabola that opens down. It is largest at its vertex.
ANSWER: $t=8.64$ years
5. (5 points each)
(a) HINT: The y-intercept of the graph is $f(0)=(0)^{2}+6(0)+8=0$. So, the line segment goes through the points $(0,8)$ and $(9,0)$. Find its equation.
ANSWER: $-\frac{8}{9} x+8$
(b) HINT: For the range, we need to know the lowest and highest y-values on the graph of f. The high value occurs at either $x=-6$ or $x=0$. It turns out that $f(-6)$ and $f(0)$ are both 8 . The low value occurs at either $x=10$ or the vertex of the parabola. The vertex of the parabola occurs at $x=-3$. (Why?) Further, $f(-3)=(-3)^{2}+6(-3)+8=-1$ and $f(10)=-\frac{8}{9}(10)+8=-\frac{8}{9}$. So, the low point on the graph has y-value -1 .
ANSWER: $D=\{x \mid-6 \leq x \leq 10\} ; R=\{y \mid-1 \leq y \leq 8\}$
(c) HINT: $(g \circ f)(x)=\sqrt{f(x)-3}$. The domain of this function consists of all values of x that are in the domain of f and such that $f(x)-3 \geq 0$. That is, the domain of $g \circ f$ consists of all values of x such that $-6 \leq x \leq 10$ and $f(x) \geq 3$. From the graph of f, I can see that $f(x)=3$ in three places. Setting $x^{2}+6 x+8=3$ gives me two of these places: $x=-5$ and $x=-1$; setting $-\frac{8}{9} x+8=3$ gives me the other. From the graph, I can see that $f(x) \geq 3$ if $-6 \leq x \leq-5$ or $-1 \leq x \leq \frac{45}{8}$.
ANSWER: $D_{g \circ f}=[-6,-5] \cup\left[-1, \frac{45}{8}\right]$

