Quiz Four Solutions

1 (a) $\sin \left(30^{\circ}\right)=1 / 2$
(b) $\cos (\pi / 3)=1 / 2$

2 Let $|B D|$ be the length of the segment from B to D. By looking at the right triangle with corners at B, C, and D, we have $\sin \left(40^{\circ}\right)=\frac{15}{|B D|}$. Solving, we get $|B D|=\frac{15}{\sin \left(40^{\circ}\right)}$.

3 Using the same notation as in the previous problem, we're looking for $|A B|=|A C|-|B C|$. We can use the same triangle as in problem 2 to see that $\tan \left(40^{\circ}\right)=\frac{15}{|B C|}$, or $|B C|=\frac{15}{\tan \left(40^{\circ}\right)}$. Similarly, looking at the triangle with corners at A, C, and D, we have $\tan \left(32^{\circ}\right)=\frac{15}{|A C|}$, or $|A C|=\frac{15}{\tan \left(32^{\circ}\right)}$. Thus $|A B|=|A C|-|B C|=\frac{15}{\tan \left(32^{\circ}\right)}-\frac{15}{\tan \left(40^{\circ}\right)}$.

4 The angular speed is $\omega=\frac{1 \text { revolution }}{2 \text { minutes }}$. Converting to radians per minute by multiplying by $1=\frac{2 \pi \text { radians }}{1 \text { revolution }}$, we get $\omega=\pi$ radians per minute.
5 The general form of the position of the TAs is

$$
(x, y)=\left(r \cos \left(\omega t+\theta_{0}\right), r \sin \left(\omega t+\theta_{0}\right)\right),
$$

where $r=75$ feet is the radius, $\omega=\pi$ radians per minute is the angular speed (and $\omega>0$ because we're moving counter-clockwise), t is the time in minutes, and $\theta_{0}=3 \pi / 2$ is the initial angle. Thus the TAs have coordinates

$$
(x, y)=(75 \cos (\pi t+3 \pi / 2), 75 \sin (\pi t+3 \pi / 2))
$$

at time t minutes.

