Quiz Five Solutions

Math 120A Spring, 2002
1 One solution of $\cos (\theta)=0$ is $\theta=\cos ^{-1}(0)=\pi / 2$, so one quadratic we can solve is $\pi x^{2}-\pi x=\cos ^{-1}(0)=\pi / 2$, or $x^{2}-x=1 / 2$. Writing this as $2 x^{2}-2 x-1=0$, we solve using the quadratic formula:

$$
x=\frac{+2 \pm \sqrt{2^{2}-4(2)(-1)}}{2(2)}=\frac{2 \pm \sqrt{12}}{4}=\frac{1 \pm \sqrt{3}}{2} .
$$

Other answers are possible using other values of θ.
2 (a) We simplify by writing $4^{1-x}=4^{1} \cdot 4^{-x}$ and $4^{-x}=\left(4^{-1}\right)^{x}=(1 / 4)^{x}$. Thus $A(x)=$ $3 \cdot 4 \cdot(1 / 4)^{x}=12(1 / 4)^{x}$.
(b) Again we simplify: $5^{2 x-1}=5^{2 x} \cdot 5^{-1}=\left(5^{2}\right)^{x} \cdot(1 / 5)$. Thus $A(x)=2 \cdot(1 / 5) \cdot(25)^{x}=$ $(2 / 5) 25^{x}$.

3 We wish to solve $75 \sin (\pi t+3 \pi / 2)=75 / 2$, or $\sin (\pi t+3 \pi / 2)=1 / 2$. The first solution is

$$
\pi t+3 \pi / 2=\sin ^{-1}(1 / 2)
$$

or

$$
t=\frac{1}{\pi}\left(\sin ^{-1}(1 / 2)-\frac{3 \pi}{2}\right)=\frac{1}{\pi}\left(\frac{\pi}{6}-\frac{3 \pi}{2}\right)=-4 / 3
$$

Another solution is

$$
\pi t+3 \pi / 2=\pi-\sin ^{-1}(1 / 2)
$$

or

$$
t=\frac{1}{\pi}\left(\pi-\sin ^{-1}(1 / 2)-\frac{3 \pi}{2}\right)=\frac{1}{\pi}\left(\pi-\frac{\pi}{6}-\frac{3 \pi}{2}\right)=-2 / 3 .
$$

Other times can be found by adding the period (which is 2 minutes): $t=-4 / 3+2=2 / 3$, $t=-2 / 3+2=4 / 3, t=2 / 3+2=8 / 3$, and so on. These are the first three times.

