## Quiz Six Solutions

Math 120A Spring, 2002
1 The first thing to notice is that $\frac{\log _{6}(25)}{\log _{6}(e)}=\log _{e}(25)=\ln (25)$. Then

$$
\begin{aligned}
\ln \left(5^{3}\right)-\frac{\log _{6}(25)}{\log _{6}(e)} & =\ln \left(5^{3}\right)-\ln (25) \\
& =\ln \left(5^{3} / 25\right) \\
& =\ln (5)
\end{aligned}
$$

This is as simple as possible.
2 We raise 2 to both sides of $\log _{2}\left(x^{2}+x\right)=2$ to get

$$
2^{\log _{2}\left(x^{2}+x\right)}=2^{2}
$$

or

$$
x^{2}+x=4
$$

This simplifies to $x^{2}+x-4=0$, which has solutions

$$
x=\frac{-1 \pm \sqrt{17}}{2}
$$

by the quadratic formula.
3 The half-life of an element is the time it takes to decay to half the initial amount. In two half-lives, the element decays to half of half, or one quarter, the initial amount. Thus 3 hours is two half-lives, or one half-life is 1.5 hours.

4 The exponential model we'll use is $A(t)=A_{0} b^{t}$, where $A(t)$ is the amount of 120 -ium after $t$ hours and $A_{0}=A(0)$ is the initial amount. We know, then, that $A_{0}=15$ grams, and that $A(1.5)=\frac{1}{2} A_{0}$ (since the half-life is 1.5 hours). Thus $A_{0} b^{1.5}=\frac{1}{2} A_{0}$, or $b^{1.5}=1 / 2$. Taking the 1.5 th root, we get $b=(1 / 2)^{1 / 1.5}=\sqrt[1.5]{1 / 2}$. (Notice that $1.5=3 / 2$, so really $\sqrt[1.5]{1 / 2}=\sqrt{(1 / 2)^{3}}=\sqrt{1 / 8}$ or $\frac{1}{2 \sqrt{2}}$.) Plugging this in, we get

$$
A(t)=15\left(\frac{1}{2}\right)^{t / 1.5}
$$

