1. Recall that $f(x)=\frac{3+x}{x}$. We wish to simplify $\frac{f(x+h)-f(x)}{h}$ as much as possible, so we first need to figure out what $f(x+h)$ is. Since $f(x)=\frac{3+x}{x}$, we get $f(x)=\frac{3+x+h}{x+h}$. Now simplifying, we get

$$
\begin{aligned}
\frac{f(x+h)-f(x)}{h} & =\frac{1}{h}\left[\frac{3+x+h}{x+h}-\frac{3+x}{x}\right] \\
& =\frac{1}{h}\left[\frac{(3+x+h) x}{x(x+h)}-\frac{(3+x)(x+h)}{x(x+h)}\right] \\
& =\frac{1}{h} \cdot \frac{3 x+x^{2}+h x-\left(3 x+3 h+x^{2}+h x\right)}{x(x+h)} \\
& =\frac{-3 h}{h x(x+h)} \\
& =\frac{-3}{x(x+h)} .
\end{aligned}
$$

This is as simplified as possible.
2. We wish to find the linear velocity of wheel C. The key formula in this case is $v=r \omega$, where for a given wheel, v is the linear velocity, r is the radius, and ω is the angular velocity (in radians per unit time). We will use subscripts to distinguish between wheels, so, for example, we wish to find v_{C} and we are told, for example, that $\omega_{A}=200 \mathrm{RPM}$ and $r_{B}=10 \mathrm{~cm}$.
Since wheels A and B are connected at the hub, they rotate at the same angular speed, so $\omega_{A}=\omega_{B}$. We may thus find wheel B 's linear speed v_{B}, as we know r_{B} and ω_{B}. Since wheels B and C are connected by a belt, their linear velocities are the same, so $v_{C}=v_{B}$. This is what we wish to find.
Now to the calculations. We first convert ω_{B} to radians per second:

$$
\omega_{B}=\omega_{A}=\left(200 \frac{\mathrm{revs}}{\mathrm{~min}}\right)\left(\frac{2 \pi \mathrm{rads}}{1 \mathrm{rev}}\right)\left(\frac{1 \mathrm{~min}}{60 \mathrm{secs}}\right)=\frac{20 \pi}{3} \frac{\mathrm{rads}}{\mathrm{sec}} .
$$

Next, we find wheel B's linear velocity using the formula $v=r \omega$:

$$
v_{B}=r_{B} \omega_{B}=(10 \mathrm{~cm})\left(\frac{20 \pi \mathrm{rads}}{3 \mathrm{sec}}\right)=\frac{200 \pi \mathrm{~cm}}{3 \mathrm{sec}} \approx 209.44 \mathrm{~cm} \text { per second. }
$$

This v_{B}, which is equal to v_{C} since wheels B and C are connected by a belt. Thus the linear velocity of wheel C is $\frac{200 \pi}{3} \mathrm{~cm}$ per second, or roughly 209.44 cm per second.
3. (a) Recall that $f(x)=\frac{3 x-2}{2 x+4}$. The y-intercept is where $x=0$, this occurs at the point $(0, f(0))=(0,-1 / 2)$. The zeroes of this function are where $f(x)=0$; this occurs only at $(2 / 3,0)$. The vertical asymptote is when the denominator $2 x+4$ is zero; it is the line $x=-2$. The horizontal asymptote is found by writing $f(x)=\frac{3-\frac{2}{x}}{2+\frac{4}{x}}$, so as x gets large $f(x)$ tends to $3 / 2$. Thus the horizontal asymptote is $y=3 / 2$. The graph of this function looks like this:

(b) The domain of $f(x)$ is the values on which $f(x)$ is defined, namely $\{x: x \neq-2$ (all x except $x=-2$). Similarly, the range of $f(x)$ is all possible values of y on the graph of $y=f(x)$. From our graph, this is clearly all values except $y=3 / 2:\{y: y \neq 3 / 2\}$.
(c) The value $f^{-1}(10)$ is the value of x for which $f(x)=10$. That is, we must solve $\frac{3 x-2}{2 x+4}=10$. We multiply through by $2 x+4$ and get $3 x-2=10(2 x+4)=20 x+40$, which simplifies to $17 x=-42$, or $x=-42 / 17$.
Alternatively, we could find the function $f^{-1}(x)$ and plug in $x=10$. We do this by solving for x in $y=\frac{3 x-2}{2 x+4}$. We get $3 x-2=y(2 x+4)=2 x y+4 y$. After simplifying, this is $3 x-2 y x=4 y+2$ or $x=\frac{4 y+2}{-2 y+3}$. Thus $f^{-1}(y)=\frac{4 y+2}{-2 y+3}$ or (equivalently) $f^{-1}(x)=\frac{4 x+2}{-2 x+3}$. Plugging in $x=10$, we have $f^{-1}(10)=\frac{42}{-17}=-42 / 17$, as above.
4. (a) Jody's angular speed is given: it's $\omega=3 / 4 \mathrm{RPM}$. We convert this to radians per second:

$$
\omega=\left(\frac{3}{4} \frac{\mathrm{revs}}{\mathrm{~min}}\right)\left(\frac{2 \pi \mathrm{rads}}{1 \mathrm{rev}}\right)\left(\frac{1 \mathrm{~min}}{60 \mathrm{secs}}\right)=\frac{\pi \mathrm{rads}}{40 \mathrm{sec}} .
$$

Thus Jody's angular speed is $\omega=\pi / 40$ radians per second, or roughly 0.785 radians per second. (Note: since Jody is traveling clockwise, perhaps the more correct answer is that $\omega=-\pi / 40$ radians per second. This negative sign will become important in part (c), below.)
(b) We will use the formula $\theta=\omega t$ to find the angle that Jody has passed through, and then $s=r \theta$ to find the length of the arc that she travels. We've found ω in part (a), so we get $\theta=\left(\frac{\pi}{40} \frac{\mathrm{rads}}{\mathrm{sec}}\right)(70 \operatorname{secs})=7 \pi / 4$ radians. Since the radius of the wheel is 45 feet, Jody travels a distance of $s=(45$ feet $)(7 \pi / 4$ radians $)=78.75 \pi$ feet, or roughly 247.40 feet.
(c) Jody's coordinates are given by the parametric equations

$$
\begin{aligned}
& x(t)=x_{c}+r \cos \left(\omega t+\theta_{0}\right) \\
& y(t)=y_{c}+r \sin \left(\omega t+\theta_{0}\right),
\end{aligned}
$$

where $\left(x_{c}, y_{c}\right)=(0,50)$ are the coordinates of the center of the circle, $r=45$ is the radius, $\omega=-\pi / 40$ radians per second is the angular velocity, and θ_{0} is the initial angle (that is, Jody's "standard" angle at $t=0$). All that's left for us is to find θ_{0}.
The angle θ_{0} is the angle that the point J makes with the horizontal ray going to the right from the center of the circle. This angle is $\pi / 2$ more than the angle that Jody passes through (that we found in part (b), above). Thus one possible θ_{0} is $\frac{7 \pi}{4}+\frac{\pi}{2}=\frac{9 \pi}{4}$; another is 2π less than this one, or $\pi / 4$. Thus Jody's coordinates at time t are given by

$$
\begin{aligned}
& x(t)=45 \cos \left(-\frac{\pi}{40} t+\frac{\pi}{4}\right) \\
& y(t)=50+45 \sin \left(-\frac{\pi}{40} t+\frac{\pi}{4}\right) .
\end{aligned}
$$

5. (a) The coordinates $(x(t), y(t))$ of plane A at time t minutes are of the linear parametric equations, so they are of the form

$$
\begin{aligned}
& x(t)=x_{0}+v_{x} t \\
& y(t)=y_{0}+v_{y} t,
\end{aligned}
$$

where $\left(x_{0}, y_{0}\right)=(1,12)$ is the position of plane A at time $t=0, v_{x}$ is the horizontal velocity of plane A, and v_{y} is the vertical velocity of plane A. (Note that since t is in minutes and the coordinate system is in miles, we want v_{x} and v_{y} to be in units of miles per minute.)
To compute the velocities, we need to know when plane A is at two different points. We know that at $t=0$ the plane is at $(1,12)$, but we don't know t when the plane is at $(10,0)$. We do know that the plane is traveling 150 miles per hour, so we can find the time by finding the distance: $d=\sqrt{(1-10)^{2}+(12-0)^{2}}=15$ miles. Since distance equals speed times time, the time is $t=\frac{d}{v}=\frac{15 \text { miles }}{150 \mathrm{mph}}=0.1$ hours, or 6 minutes. From this we get the horizontal and vertical velocities:

$$
v_{x}=\frac{\Delta x}{\Delta t}=\frac{10-1 \mathrm{miles}}{6-0 \mathrm{mins}}=1.5 \text { miles per minute }
$$

and

$$
v_{y}=\frac{\Delta y}{\Delta t}=\frac{0-12 \text { miles }}{6-0 \mathrm{mins}}=-2 \text { miles per minute. }
$$

Thus plane A 's coordinates at time t minutes are

$$
\begin{aligned}
& x(t)=1+1.5 t \\
& y(t)=12-2 t .
\end{aligned}
$$

(b) We want to find the equation of the line $y=m x+b$ of travel for plane B. We are told, through the parametric equations, that the initial position (at $t=0$) of plane B is $(x, y)=(-6,0)$, the horizontal velocity of the plane is $v_{x}=4.5$ miles per minute, and the vertical velocity is $v_{y}=0.5$ miles per minute. The slope of the line of travel is $m=v_{y} / v_{x}=0.5 / 4.5=1 / 9$, so the equation is $y=\frac{1}{9} x+b$. By plugging in $(x, y)=(-6,0)$, we find that the equation is $y=\frac{1}{9} x+\frac{6}{9}$ or $y=\frac{1}{9} x+\frac{2}{3}$.
(c) To find when the two planes are 5 miles apart, we set the distance between them equal to 5 miles and solve for t. The distance between the two planes is

$$
\begin{aligned}
d & =\sqrt{\left(x_{A}-x_{B}\right)^{2}+\left(y_{A}-y_{B}\right)^{2}} \\
& =\sqrt{((1+1.5 t)-(-6+4.5 t))^{2}+((12-2 t)-0.5 t)^{2}} \\
& =\sqrt{(7-3 t)^{2}+(12-2.5 t)^{2}} \\
& =\sqrt{15.25 t^{2}-102 t+193 .}
\end{aligned}
$$

We set this equal to 5 miles and square both sides:

$$
25=15.25 t^{2}-102 t+193
$$

or

$$
15.25 t^{2}-102 t+168=0
$$

Using the quadratic formula, we get two times when the planes are 5 miles apart:

$$
t=\frac{102 \pm \sqrt{156}}{30.50}=\frac{204 \pm 4 \sqrt{39}}{61} \approx 2.93 \text { or } 3.75 \text { minutes. }
$$

6. Recall that the temperature T (in degrees Celsius) of the coffee and time t (in minutes since it was poured) are related by the formula

$$
t=-25 \ln \left(\frac{T-20}{75}\right)
$$

(a) The coffee $40^{\circ} \mathrm{C}$ when $T=40$. This occurs at time

$$
t=-25 \ln \left(\frac{40-20}{75}\right)=-25 \ln \left(\frac{4}{15}\right) \approx 33.04 \text { minutes }
$$

since the coffee was poured.
(b) For this question, we're looking for T when $t=0$. That is, we wish to solve the equation

$$
0=-25 \ln \left(\frac{T-20}{75}\right)
$$

for the temperature T. If we divide both sides by -25 , then exponentiate, we get $(T-20) / 75=e^{0}=1$, or $T=95$ Celsius.
(c) For this question, we're looking for T when $t=10$. That is, we wish to solve the equation

$$
10=-25 \ln \left(\frac{T-20}{75}\right)
$$

for the temperature T. If we divide both sides by -25 , then exponentiate, we get $(T-20) / 75=e^{-10 / 25}$, or $T=20+75 e^{-2 / 5} \approx 70.27$ Celsius.
7. (a) We wish to write the depth of the water as a sinusoidal function $d(t)=A \sin \left(\frac{2 \pi}{B}(t-C)\right)+$ D, where $d(t)$ is in feet and the time t is the number of hours since midnight. We are told that the maximum depth is 25 feet, and the minimum depth is 5 feet. Thus the mean is $D=(25+5) / 2=15$ and the amplitude is $A=25-15=10$ (or $15-5=10$, or $(25-5) / 2=10$). Also, we know that it takes 3.5 hours to go from a maximum (high tide) to a minimum (low tide). This is also half of a period, so $3.5=B / 2$, or $B=7$ hours. Finally, to find the phase shift C, we use the fact that at $t=6.5$ (6:30 AM) the water level is at the mean and falling. This is exactly half a period (or 3.5 hours) away from when the water level is at the mean and rising (which is a possible value of C). Thus possible values of C are $6.5-3.5=3$, or $6.5+3.5=10$. Putting this together, we have the sinusoidal function is $d(t)=10 \sin \left(\frac{2 \pi}{7}(t-3)\right)+15$.
(b) This question asks for the depth of the water at 1:00 AM, or $t=1$. This is simply $d(1)=10 \sin \left(\frac{2 \pi}{7}(1-2)\right)+15 \approx 5.251$ feet.
(c) We wish to find the times at which $d(t)=10$, so that we can say when the depth of the water is at least 10 feet. If we solve $d(t)=10 \sin \left(\frac{2 \pi}{7}(t-3)\right)+15=10$, we get $\sin \left(\frac{2 \pi}{7}(t-3)\right)=-1 / 2$. Thus we want to find possible solutions to $\sin (\theta)=-1 / 2$. Two solutions to this are $\theta_{1}=\sin ^{-1}(-1 / 2)=-\pi / 6 \approx-0.523599$ and $\theta_{2}=\pi-\sin ^{-1}(-8 / 10) \approx$ 3.665191. Rewriting these in terms of times, we have $\frac{2 \pi}{7}\left(t_{1}-3\right)=\sin ^{-1}(-1 / 2)=-\pi / 6$ and $\frac{2 \pi}{7}\left(t_{2}-3\right)=\pi-\sin ^{-1}(-8 / 10)=7 \pi / 6$. Solving, these are $t_{1}=3+\frac{7}{2 \pi} \cdot\left(-\frac{\pi}{6}\right)=$ $3-\frac{7}{12}=29 / 12$ (the principal solution) and $t_{2}=3+\frac{7}{2 \pi} \cdot \frac{7 \pi}{6}=3+\frac{49}{12}=85 / 12$ (the symmetry solution).
By adding and subtracting multiples of the period (7 hours), we can find all times when the depth is precisely 10 feet. During the first 24 hours (from $t=0$ to $t=24$) these times are $t=85 / 12-7=1 / 12, t=29 / 12, t=85 / 12, t=29 / 12+7 \approx 9.42$, $t=85 / 12+7 \approx 14.08, t=29 / 12+14 \approx 16.42, t=85 / 12+14 \approx 21.08$, and $t=29 / 12+21 \approx 24.58$. (The next time is $t=85 / 12+21 \approx 28.08$.)
Looking at the graph, or noticing that the water is 15 feet deep at $t=6.5$, we see that the water is at least 10 feet deep from $t=0$ to $t=1 / 12$, from $t=29 / 12$ to $t=85 / 12$ (and $t=6.5$ sits in this interval), from $t=29 / 12+7$ to $t=85 / 12+7$, from $t=29 / 12+14$ to $t=85 / 12+14$, and from $t=29 / 12+21$ to $t=24$. This is a total time of $\frac{1}{12}+\frac{56}{12}+\frac{56}{12}+\frac{56}{12}+\frac{7}{12}=\frac{176}{12} \approx 14.67$ hours.
8. (a) The formula for the value of Linda's house in year $1996+x$ is an exponential function, so it is of the form $H(x)=H_{0} \cdot b^{x}$. We're told that $H(0)=150,000$ and $H(5)=210,000$. Plugging these in, we find $H_{0}=150,000$ and $210,000=150,000 \cdot b^{5}$. This means $b^{5}=1.4$, or $b=(1.4)^{1 / 5}=\sqrt[5]{1.4} \approx 1.069610376$. The final formula is thus $H(x)=150,000(1.4)^{x / 5} \approx 150,000(1.069610376)^{x}$.
(b) The value of Linda's home in 2005 is $H(9)=150,000(1.4)^{9 / 5} \approx \$ 274,866.44$.
(c) We begin by finding x so that $H(x)=2(150,000)$, or $(1.4)^{x / 5}=2$. We take the natural logarithm of this equation to get $\frac{x}{5} \ln (1.4)=\ln (2)$, or $x=\frac{5 \ln (2)}{\ln (1.4)} \approx 10.30$ years after 1996.
9. (a) and (b) The graphs for the first two parts look like these:

(c) The function $y=\sqrt{f\left(\frac{1}{2}(x-1)\right)-3}$ is defined on the domain $\{x:-7 \leq x \leq 5\}$. This is the largest possible domain, as is clear from the graph (since $f\left(\frac{1}{2}(x-1)\right)-3<0$ or undefined outside this set).

