1. (a) ANSWER: $\frac{f(x+h)-f(x)}{h}=2 x+h$
(b) ANSWER: There are no zeros. The line $y=\frac{1}{4}$ is the horizontal asymptote. The lines $x=-5$ and $x=4$ are the vertical asymptotes.
(c) $g^{-1}(x)=\frac{1}{e^{x}-1}$
(d) HINT: Start by taking the \ln of both sides:

$$
\ln 7^{\left(a^{2}-5 a\right)}=\ln 3 \Rightarrow\left(a^{2}-5 a\right) \ln 7=\ln 3 \Rightarrow a^{2}-5 a=\frac{\ln 3}{\ln 7} \Rightarrow a^{2}-5 a-\frac{\ln 3}{\ln 7}=0 .
$$

Use the quadratic formula to solve for a.
ANSWER: $a=5.1105$ or -0.1105
2. (a) ANSWER: $D_{f}=[-6,5], R_{f}=[-1,2]$
(b) ANSWER:

$$
f(x)= \begin{cases}-1 & \text { if }-6 \leq x \leq-3 \\ -1+\sqrt{4-(x+1)^{2}} & \text { if }-3 \leq x \leq 1 \\ \frac{3}{4} x-\frac{7}{4} & \text { if } 1 \leq x \leq 5\end{cases}
$$

(c) ANSWER: The y-intercept is $\sqrt{3}-1$. The x-intercepts are $x=-1 \pm \sqrt{3}$ and $x=\frac{7}{3}$.
(d) HINTS: To find the domain, notice that x is in the domain of $g(x)$ if, and only if, $\frac{1}{2}(x-1)$ is in the domain of $f(x)$. So, solve the inequality $-6 \leq \frac{1}{2}(x-1) \leq 5$ for x. The range of $g(x)$ will be the same as the range of $f(x)$.
ANSWER: $D_{g}=[-11,11], R_{g}=[-1,2]$
3. (a) HINT: You'll earn $\$ 900$ for selling 60 CDs $(15 \times \$ 60)$. You'll spend $C(60)=\$ 100$ making 60 CDs.
ANSWER: $\$ 800$
(b) ANSWER: $P(x)=15 x-C(x)=-0.03 x^{2}+18.6 x-208$.
(c) HINT: The formula for profit is a parabola that opens downward. The maximum profit is the second coordinate of the vertex.
ANSWER: $\$ 2675$
4. (a) HINT: Find the equation of the line that is Dory's path $\left(y=-\frac{1}{6} x-10\right)$ and the equation of the circle that bounds the clearing $\left(x^{2}+y^{2}=3600\right)$. Find where these two curves intersect. One point will be $(-60,0)$. The other will be Dory's point of exit from the clearing.
ANSWER: $(56.7568,-19.4595)$
(b) HINT: Use the formulas for linear motion in Chapter 23 of the text.

ANSWER: $x(t)=3.8919 t-60, y(t)=-0.6486 t$
(c) HINT: Compute the distance across the clearing and divide by 20 seconds.

ANSWER: Dory must run 5.9184 feet per second or faster.
5. (a) HINT: You're looking for the equation of the line through the points $(0,220)$ and $(8,609)$. ANSWER: $C(t)=48.625 t+220$
(b) HINT: You're looking for the exponential function through the points $(0,6)$ and $(8,50)$. ANSWER: either $B(t)=6\left(\frac{25}{3}\right)^{t / 8}=6(1.303473914)^{t}$ or $B(t)=6 e^{0.265032942 t}$
(c) HINT: Solve the equation $B(t)=72$ for $t(t=9.37584072)$ and plug your result into $C(t)$.
ANSWER: $C(9.37584072)=676$ coins
6. (a) ANSWERS: $V(17,62) W(24.5,55)$
(b) ANSWERS: $A=7, B=10 C=17$ or 7 or 27 , etc., $D=62$
7. (a) HINT: Find the angle between Rita's starting location and her location after 4 seconds. $\left(\theta=\cos ^{-1}\left(\frac{59}{100}\right)=0.9397\right.$ radians) Then angular speed is $\omega=\frac{\theta}{t}$.
ANSWER: $\omega=0.2349$ radians per second
(b) ANSWER: $v=23.4934$ feet per second
(c) HINT: Use the formulas for circular motion from Chapter 22 of your text. ANSWER: $x(t)=100 \cos \left(0.2349 t-\frac{\pi}{2}\right), y(t)=100 \sin \left(0.2349 t-\frac{\pi}{2}\right)+103$

