Math 120AB Winter 2004
 Solutions to Final Exam
 March 13, 2004

1. An ant is heading toward a circular region of pancake batter. The ant cannot breathe while walking through the batter. The batter has a radius of 4 cm . The ant is going to walk from a point 6 cm due north of the batter's center to a point 5 cm due west of the batter's center.
If the ant moves at $0.8 \mathrm{~cm} / \mathrm{sec}$, how long will it have to hold its breath?

Solution:

We set up a coordinate system with the center of circle of batter as the origin. Then the line of the ant's path has slope $\frac{6-0}{0-(-5)}=\frac{6}{5}$. The equation of the line is thus

$$
y=\frac{6}{5} x+6
$$

The batter is represented by the circle with equation

$$
x^{2}+y^{2}=4^{2}=16
$$

We thus seek the intersection of this line and this circle:

$$
\begin{gathered}
x^{2}+\left(\frac{6}{5} x+6\right)^{2}=16 \\
x^{2}+\frac{36}{25} x^{2}+\frac{72}{5} x+36=16 \\
\frac{61}{25} x^{2}+\frac{72}{5} x+20=0 \\
x=\frac{-\frac{72}{5} \pm \sqrt{\left(\frac{72}{5}\right)^{2}-4\left(\frac{61}{25}\right)(20)}}{2 \cdot \frac{61}{25}}=-2.236236 \text { and }-3.665393 .
\end{gathered}
$$

At these values of x, we have

$$
y=3.3165047 \text { and } y=1.601528
$$

The distance travelled by the ant through the batter is thus 2.232399 cm , and the time that the ant has to hold its breath is

$$
\frac{2.232399 \mathrm{~cm}}{0.8 \mathrm{~cm} / \mathrm{sec}}=2.790499 \mathrm{sec}
$$

2. The populations of the cities of Alexandria and Springfield are growing exponentially. In 1980, the population of Alexandria was 120,000 and the population of Springfield was 85,000 . In 1995, the population of Alexandria was 185,000 . The population of Springfield triples every 25 years.
In what year will there be twice as many people in Springfield as in Alexandria?

Solution:

Alexandria:

Say 1980 is $t=0$. Then if $A(t)$ is the population (in thousands) of Alexandria t years after 1980, we have

$$
\begin{gathered}
A(t)=A_{0} b^{t} \\
A(0)=120=A_{0} b^{0}=A_{0} \\
A(15)=185=A_{0} b^{15}=120 b^{15} \\
b^{15}=\frac{185}{120} \\
b=\left(\frac{185}{120}\right)^{1 / 15}=1.02927802 .
\end{gathered}
$$

So $A(t)=120(1.02927802)^{t}$.
Springfield:
With a similar setup, we have

$$
\begin{gathered}
S(t)=C_{0} d^{t} \\
S(0)=85=C_{0} d^{0}=C_{0} \\
S(25)=3 \cdot 85=85 d^{25} \\
3=d^{25} \\
d=3^{1 / 25}=1.04492435 .
\end{gathered}
$$

So $S(t)=85(1.04492435)^{t}$.
Now, the question asks when there will be twice as many people in Springfield as in Alexandria, so we need to solve the equation

$$
\begin{gathered}
S(t)=2 A(t) \\
85(1.04492435)^{t}=2 \cdot 120(1.02927802)^{t} \\
\ln 85+t \ln 1.04492435=\ln 240+t \ln 1.02927802 \\
t=\frac{\ln 240-\ln 85}{\ln 1.04492435-\ln 1.02927802}=68.8007
\end{gathered}
$$

or the year 2048 .
3. Suppose the value of my shoehorn collection is growing according to a linear model. In 2000, it was worth $\$ 4.80$. In 2002, it was worth $\$ 5.03$.

My toothpaste collection is also growing in value according to a linear model. In 1990, the collection was worth $\$ 2.22$, while in 1995 , it was worth $\$ 3.19$.
When will my toothpaste collection be worth $\$ 5.00$ more than my shoehorn collection?

Solution:

Let the year 2000 be represented by $t=0$. Then, for shoehorns we have the data points $(0,4.80)$, and $(2,5.03)$, so our linear model is

$$
S(t)=4.80+0.115 t
$$

For toothpaste, the data points are $(-10,2.22)$ and $(-5,3.19)$, so the linear model is

$$
T(t)=4.16+0.194 t
$$

The problem thus asks us to solve the equation

$$
T(t)=5+S(t)
$$

from which we find

$$
t=71.3924
$$

or the year 2071.
4. The amount of radiation from a star is observed to be a sinusoidal function of time. You measure the radiation output at its maximum of 400 megawatts at 3 AM one morning. It then drops to its minimum of 180 megawatts at 8 PM that evening. What percentage of the time is the radiation from the star greater than 350 megawatts?

Solution:

Using the standard sinusoidal model,

$$
R(t)=A \sin \left(\frac{2 \pi}{B}(t-C)\right)+D
$$

we have

$$
\begin{gathered}
A=\frac{400-180}{2}=110 \\
B=2 \cdot 17=34 \\
D=\frac{400+180}{2}=290 \\
C=3-\frac{B}{4}=-5.5
\end{gathered}
$$

To answer the question we need first to solve $R(t)=350$:

$$
\begin{gathered}
R(t)=110 \sin \left(\frac{2 \pi}{34}(t+5.5)\right)+290=350 \\
\frac{2 \pi}{34}(t+5.5)=\sin ^{-1} \frac{60}{110}=0.5769313 \\
t=-2.37807
\end{gathered}
$$

The symmetry solution is

$$
3+(3-(-2.37807))=8.37807
$$

Hence, the time above 350 MW per period is $8.37807-(-2.37807)=10.7561$ hours which is

$$
\frac{10.7561}{34}=31.636 \%
$$

of the time.
5. Susie starts running at a constant speed in a straight line from a point 20 meters due south of a light post in a park to a bench that is 40 meters due east of the light post. It will take her 15 seconds to get to the bench. Express her distance from the light post as a function of the time t since she started running.

Solution:

We set up a coordinate system with the light post at the origin, so that her starting point is $(0,-20)$ and the bench is at $(40,0)$. Since Susie is moving in a straight line at a constant speed, we know that the x - and y-coordinates of her position can be described as linear functions of time. So, for some constants a, b, c, and d, her location $(x(t), y(t))$ at time t is given by

$$
x(t)=a+b t, y(t)=c+d t
$$

We can take t to be the time since she starts, so that

$$
x(0)=a=0
$$

and

$$
y(0)=-20=c
$$

Also,

$$
x(15)=40=0+15 b
$$

so $b=\frac{40}{15}$ and

$$
y(15)=0=-20+15 d
$$

so $d=\frac{20}{15}$. Finally then,

$$
x(t)=\frac{40}{15} t, \text { and } y(t)=-20+\frac{20}{15} t .
$$

Thus her distance to the origin (light post) is given by

$$
D(t)=\sqrt{\left(\frac{40}{15} t\right)^{2}+\left(-20+\frac{20}{15} t\right)^{2}}
$$

6. Find all values of d so that the quadratic function

$$
f(x)=x(x+d)+2 d
$$

has its vertex on the x-axis.

Solution:

We have

$$
f(x)=x^{2}+d x+2 d=\left(x+\frac{d}{2}\right)^{2}-\frac{d^{2}}{4}+2 d
$$

so the y-coordinate of the vertex is

$$
y=2 d-\frac{d^{2}}{4}
$$

For the vertex to be on the x-axis, this must be zero so

$$
\begin{gathered}
0=2 d-\frac{d^{2}}{4} \\
0=d\left(2-\frac{d}{4}\right)
\end{gathered}
$$

so $d=0$ or $d=8$.
7. Let $g(x)=\frac{3 x+6}{5 x-7}$.

Find $g^{-1}(x)$.
Solution:
Let $y=g(x)$ and solve for x :

$$
\begin{gathered}
y=\frac{3 x+6}{5 x-7} \\
5 y x-7 y=3 x+6
\end{gathered}
$$

$$
\begin{gathered}
(5 y-3) x=6+7 y \\
x=\frac{6+7 y}{5 y-3}
\end{gathered}
$$

So

$$
g^{-1}(x)=\frac{6+7 x}{5 x-3} .
$$

8. Let $f(x)=\frac{(x+3)(2 x-5)}{x^{2}-5 x-6}$.
(a) Find the zeros of $f(x)$.
(b) Find the horizontal asymptote of $f(x)$ or state that it has none.
(c) Find all vertical asymptotes of $f(x)$.

Solution:

(a) If $f(x)=0$, then

$$
(x+3)(2 x-5)=0
$$

so $x=-3$ or $x=\frac{5}{2}$. Since the denominator factors as

$$
(x-6)(x+1)
$$

we see that the denominator is not made zero by these values, so they are the zeros of $f(x)$.
(b) We may write

$$
f(x)=\frac{(x+3)(2 x-5)}{x^{2}-5 x-6}=\frac{2 x^{2}+x-15}{x^{2}-5 x-6}\left(\frac{\frac{1}{x^{2}}}{\frac{1}{x^{2}}}\right)=\frac{2+\frac{1}{x}-\frac{15}{x^{2}}}{1-\frac{5}{x}-\frac{6}{x^{2}}} \approx \frac{2+0-0}{1-0-0}=2
$$

when x is large. Thus, $y=2$ is the horizontal asymptote.
(c) Since the denominator of $f(x)$ factors as

$$
(x-6)(x+1)
$$

we see that the function has vertical asymptotes at $x=6$ and $x=-1$ (noting that the numerator is not made zero by these values).
9. Patrick is riding his bicycle around a circular track. The track has a radius of 50 meters.
(a) If a ray from the center of the track to Patrick sweeps out area at the rate of 150 square meters per second, how fast is Patrick moving?

Solution:

There are many ways to solve this problem. One is to note that the area of the entire circle swept out by the ray is

$$
\pi\left(50^{2}\right)=7853.98163 \text { square meters. }
$$

Since the ray sweeps out 150 square meters per second, it will take

$$
\frac{7853.98163 \text { square meters }}{150 \text { square meters per second }}=52.359878 \text { seconds }
$$

to sweep out the whole circle. That is, Patrick does a lap of the track every 52.359878 seconds. Hence, his angular speed is

$$
\frac{2 \pi}{52.359878}=0.12 \text { radians per second }
$$

and so his linear speed is

$$
(0.12 \text { radians per second })(50 \text { meters })=6 \text { meters per second }
$$

(b) Patrick's coach is standing at the edge of the track. Patrick passes her while riding at a constant 11 meters per second. What is the straight-line distance between Patrick and his coach 12 seconds later?

Solution:

Setting the origin at the center of the track and the coach at the point $(50,0)$, Patrick's position t seconds after passing the coach is given by

$$
(50 \cos (\omega t), 50 \sin (\omega t))
$$

where ω is Patrick's angular speed. Since his linear speed is 11 meters per second, his angular speed can be found using the relation $v=r \omega$, i.e.,

$$
\omega=\frac{v}{r}=\frac{11 \mathrm{~m} / \mathrm{sec}}{50 \mathrm{~m}}=0.22 \text { radians per second. }
$$

Thus, after 12 seconds, Patrick's location is

$$
(50 \cos (0.22 \cdot 12), 50 \sin (0.22 \cdot 12))=(-43.8409,24.0411)
$$

and so the distance from him to his coach is

$$
\sqrt{(50+43.8409)^{2}+24.0411^{2}}=96.8715 \text { meters. }
$$

10. Find the coordinates of the point labelled A in the figure below.

Solution:
The line passing through $(0,6)$ intersects the x-axis at a point with x-coordinate a with

$$
\frac{a}{6}=\tan 41^{\circ}
$$

i.e., $a=5.2157204$. Hence the line has slope

$$
-\frac{6}{5.2157204}=-1.150368
$$

and equation $y=-1.150368 x+6$.
The other line intersects the y-axis at the point $(0, b)$ with

$$
\frac{b}{10}=\tan 23^{\circ}
$$

so $b=10 \tan 23^{\circ}=4.24474816$ and the line has equation

$$
y=-0.424474816 x+4.24474816
$$

Setting these two lines equal to each other and solving we find A has coordinates

$$
x=2.4180588, y=3.218342 \text {. }
$$

